BASICS OF DYNAMIC STOCHASTIC GENERAL EQUILIBRIUM

OCTOBER 12, 2011

ASSET PRICING APPLICATIONS

Lucas-tree model
General equilibrium asset pricing

Equity premium puzzle
Risk-free rate puzzle
Alternative preference specifications
Recursive utility (Epstein-Zin)
Habit persistence
Hyperbolic discounting

Risk sharing
Aggregation
Constructing the representative consumer)

HETEROGENEITY

- Implementing representative consumer
 - An infinity of consumers, each indexed by a point on the unit interval [0,1]
 - Each individual is identical in preferences and endowments
 - Implies aggregate consumption demand and asset demand

Aggregate consumption

One individual's consumption x 1

Aggregate savings demand

One individual's savings demand x 1

- Under some particular types of heterogeneity, a representative-consumer foundation of aggregates exists
 - Provided complete set of Arrow-Debreu securities exists...
 - ...to allow individuals to diversify away (insure) their idiosyncratic risk
- **Consider heterogeneity**
 - In income realizations (from Markov process)
 - In initial asset holdings a
 - In utility functions (application to CRRA utility)
 - Example: two types of individuals to illustrate

October 12, 2011

3

Towards A Representative Consumer

HETEROGENEITY

Two types of individuals, $i \in \{1,2\}$, each with population weight 0.5

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u^i(c^i_t) \quad \text{subject to } c^i_t + \sum_i R^j_t a^{ij}_t = y^i_t + a^i_{t-1}$$

Optimization between period t and state j in period t+1 (conditional on period t outcomes)

$$\frac{u_c^1(c_t^1)}{\beta u_c^1(c_{t+1}^{1j})} = \frac{R_t^j}{p_{t+1}^j} \qquad \frac{R_t^j}{p_{t+1}^j} = \frac{u_c^2(c_t^2)}{\beta u_c^2(c_{t+1}^{2j})}$$

$$\frac{R_t^j}{p_{t+1}^j} = \frac{u_c^2(c_t^2)}{\beta u_c^2(c_{t+1}^{2j})}$$

Given all individuals base choices on same prices and probabilities

RISK SHARING

Two types of individuals, $i \in \{1,2\}$, each with population weight 0.5

 $\max E_0 \sum_{t=0}^{\infty} \beta^t u^i(c^i_t) \quad \text{subject to} \ \ c^i_t + \sum_i R^j_t a^{ij}_t = y^i_t + a^i_{t-1}$

 Optimization between period t and state j in period t+1 (conditional on period t outcomes)

 $\frac{u_c^1(c_i^1)}{\beta u_c^1(c_{t+1}^{1j})} = \frac{u_c^2(c_t^2)}{\beta u_c^2(c_{t+1}^{2j})}$ In all states at all dates

- □ PERFECT RISK SHARING
 - ☐ IMRS, for each state *j*, equated across individuals
 - Individuals experiencing idiosyncratic shocks can insure them away (provided complete markets)
- \square Risk sharing about equalizing fluctuations of u'(.) across individuals
 - \Box Not about equalizing levels of u'(.) or consumption over time
- If initial conditions, period-zero outcomes, and u(.) are identical (e.g., due to identical a₀ and realized y₀), then risk sharing → identical outcomes ∀ t

→ A representative consumer

October 12, 2011

5

Towards A Representative Consumer

RISK SHARING

□ Two types of individuals, $i \in \{1,2\}$, each with population weight 0.5

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u^i(c^i_t) \quad \text{subject to } c^i_t + \sum_i R^j_t a^{ij}_t = y^i_t + a^i_{t-1}$$

Optimization between period t and state j in period t+1 (conditional on period t outcomes)

$$\frac{u_c^1(c_t^1)}{\beta u_c^1(c_{t+1}^{1j})} = \frac{u_c^2(c_t^2)}{\beta u_c^2(c_{t+1}^{2j})}$$

In all states at all dates

- □ PERFECT RISK SHARING
 - ☐ IMRS, for each state *j*, equated across individuals
 - Individuals experiencing idiosyncratic shocks can insure them away (provided complete markets)
- If initial conditions, period-zero outcomes, and u(.) are identical (e.g., due to identical a_0 and realized y_0), then risk sharing → identical outcomes \forall t

Risk sharing across individuals \approx consumption smoothing for a given individual (= if initial conditions, t=0 outcomes, and u(.) identical)

October 12, 2011

6

RISK SHARING

Example: CRRA utility, but heterogenous RRA/IES

 $\sigma^1 \neq \sigma^2$

$$\left(\frac{c_{t}^{1}}{c_{t+1}^{1j}}\right)^{-\sigma^{1}} = \left(\frac{c_{t}^{2}}{c_{t+1}^{2j}}\right)^{-\sigma^{2}}$$

Perfect risk sharing

- IMRS equated across individuals
- Growth rates of consumption not equated unless $\sigma^1 = \sigma^2$

$$\frac{c_{t+1}^{1j}}{c_t^1} = \left(\frac{c_{t+1}^{2j}}{c_t^2}\right)^{\sigma^2/\sigma^1}$$

- Allocations are Pareto-optimal (implied by First Welfare Theorem)
 - All MRS's (across individuals, states, and dates) are equated
 - Even though levels of consumption may differ across individuals
 - No individual can be made better off without making some agent worse off
 - (Pareto welfare concept takes distributions of outcomes as given)
 - Due to complete financial markets

October 12, 2011

Towards A Representative Consumer

AGGREGATION

Example: CRRA utility, but heterogenous RRA/IES

 $\sigma^1 \neq \sigma^2$

$$\left(\frac{c_{t}^{1}}{c_{t+1}^{1j}}\right)^{-\sigma^{1}} = \left(\frac{c_{t}^{2}}{c_{t+1}^{2j}}\right)^{-\sigma^{2}}$$

Perfect risk sharing

- IMRS equated across individuals
- Growth rates of consumption not equated unless $\sigma^1 = \sigma^2$

$$\frac{c_{t+1}^{1j}}{c_t^1} = \left(\frac{c_{t+1}^{2j}}{c_t^2}\right)^{\sigma^2/\sigma^1}$$

- Allocations are Pareto-optimal (implied by First Welfare Theorem)
 - All MRS's (across individuals, states, and dates) are equated
 - Even though levels of consumption may differ across individuals
 - No individual can be made better off without making some agent worse off (Pareto welfare concept takes distributions of outcomes as given)
 - Due to complete financial markets
- Pareto-optimal allocations + heterogeneity of utility functions
 - There exists a utility function u(c) in aggregate $c \equiv c^1 + c^2$ that leads to the same aggregates (Constantanides (1982)); if CRRA, u(.) has $\sigma \in (\sigma^1, \sigma^2)$

AGGREGATION

■ Now consider economy-wide aggregates

 $c_t = 0.5c_t^1 + 0.5c_t^2$ Aggregate consumption $y_t = 0.5y_t^1 + 0.5y_t^2$ Aggregate income (endowment) $a_t = 0.5a_t^1 + 0.5a_t^2$ Aggregate assets?

(For each type of asset)

- ☐ So far have been considering assets as claims (paper!) (partial equilibrium)
- In aggregate, must be some tangible asset(s) backing them (equilibrium)
- □ No physical assets in simple model(s) so far $\Rightarrow a_t = \frac{0 \text{ in aggregate}}{2} \forall t !!!$

October 12, 2011

Towards A Representative Consumer

AGGREGATION

■ Now consider economy-wide aggregates

 $c_{t} = 0.5c_{t}^{1} + 0.5c_{t}^{2}$ $y_{t} = 0.5y_{t}^{1} + 0.5y_{t}^{2}$ $0 = a_{t} = 0.5a_{t}^{1} + 0.5a_{t}^{2}$ Aggregate income (endowment)

Aggregate assets = 0 if no physical assets

(For each type of asset)

- □ So far have been considering assets as claims (paper!) (partial equilibrium)
- ☐ In aggregate, must be some tangible asset(s) backing them (equilibrium)
- □ No physical assets in simple model(s) so far $\rightarrow a_t = 0$ in aggregate $\forall t !!!$
- □ Heterogenous individuals creating/buying/selling assets vis-à-vis each other
- □ Richer models

- ☐ Mediate through "banking" or "insurance" markets, etc.
 - But only meaningful if some friction/imperfections in model of financial markets...
- $\ \square$...otherwise identical outcomes (in which case "banking" sector is a "veil")

AGGREGATION

Economy-wide aggregates

$$c_t = 0.5c_t^1 + 0.5c_t^2$$
$$y_t = 0.5y_t^1 + 0.5y_t^2$$

Aggregate consumption Aggregate income (endowment)

Asset-market clearing condition (for each type of asset)

 $0 = a_t = 0.5a_t^1 + 0.5a_t^2$

Aggregate assets = 0 if no physical assets

- $\textbf{Aggregate savings} = a_t a_{t-1} = \mathbf{0} \; \forall \; t$
- Aggregate together two types' budget constraints

$$c_t^1 + \sum_{i} R_i^j a_t^{1j} = y_t^1 + a_{t-1}^1 \qquad c_t^2 + \sum_{i} R_i^j a_t^{2j} = y_t^2 + a_{t-1}^2$$

$$+\sum_{i}R_{t}^{j}a_{t}^{2j}=y_{t}^{2}+a_{t-1}^{2}$$

Weight by share of population

$$\Rightarrow 0.5(c_t^1 + c_t^2) + \sum_j R_t^j 0.5(a_t^{1j} + a_t^{2j}) = 0.5(y_t^1 + y_t^2) + 0.5(a_{t-1}^1 + a_{t-1}^2)$$

October 12, 2011 11

Towards A Representative Consumer

AGGREGATION

Economy-wide aggregates

$$c_{t} = 0.5c_{t}^{1} + 0.5c_{t}^{2}$$

$$y_t = 0.5 y_t^1 + 0.5 y_t^2$$

Aggregate consumption **Aggregate income**

Aggregate assets = 0 if no *physical* assets

Asset-market clearing condition (for each type of asset)

$$0 = a_t = 0.5a_t^1 + 0.5a_t^2$$

(endowment)

- $\textbf{Aggregate savings} = a_t a_{t-1} = \mathbf{0} \; \forall \; t$
- Aggregate together two types' budget constraints $c_t^2 + \sum_j R_t^j a_t^{2j} = y_t^2 + a_{t-1}^2$ $c_t^1 + \sum R_t^j a_t^{1j} = y_t^1 + a_{t-1}^1$

A general procedure for constructing economywide resource constraint goods available = goods used

Weight by share of population Impose asset-market clearing condition(s)

$$\Rightarrow 0.5(c_t^1 + c_t^2) + \sum_j R_i^j 0.5(\underline{a_t^{1j} + a_t^{2j}}) = 0.5(y_t^1 + y_t^2) + 0.5(\underline{a_{t-1}^1 + a_{t-1}^2})$$

$$\Rightarrow c_t = y_t$$

Goods-market clearing condition - aka resource constraint

TOWARDS DYNAMIC GENERAL EQUILIBRIUM

- Lifecycle/permanent income consumption model the most basic building block of all macro models
- Dynamic stochastic general equilibrium (DSGE) theory
 - □ (DGE if deterministic)
 - ☐ GE: simultaneous determination of prices and quantities in all markets (macro markets: goods, labor, capital)
- □ Foundations of baseline DSGE model
 - ☐ Representative consumer
 - □ Representative firm
 - □ Perfect competition in all markets
 - □ Rational expectations
 - □ Perfect AD financial markets

October 12, 2011 1

Macro Fundamentals

TOWARDS DYNAMIC GENERAL EQUILIBRIUM

- Lifecycle/permanent income consumption model the most basic building block of all macro models
- Dynamic stochastic general equilibrium (DSGE) theory
 - □ (DGE if deterministic)
 - ☐ GE: simultaneous determination of prices and quantities in all markets (macro markets: goods, labor, capital)
- □ Foundations of baseline DSGE model
 - □ Representative consumer
 - □ Representative firm
 - □ Perfect competition in all markets
 - □ Rational expectations
 - □ Perfect AD financial markets

THE REAL BUSINESS CYCLE MODEL

(Kydland and Prescott (1982), Long and Plosser (1983), King, Plosser, and Rebelo (1988)

Econ 602

- □ All modern macro models descend from RBC model dynamic GE
 - □ No matter how many market imperfections, heterogeneity, etc, etc.
- ☐ Foundations of the foundations of RBC model
 - Without optimizing consumers: Solow growth model
 - ☐ With optimizing consumers: Ramsey/Cass/Koopmans model

Solow growth model"

TOWARDS DYNAMIC GENERAL EQUILIBRIUM

 $y_t + (1 + r_t)a_{t-1}$

- \square Model of non-asset income so far: endowment y_t , possible stochastic
- \square Now suppose y_t is labor income

 $y_t = w_t n_t$

- □ Normalize "time available" in each time period to one unit
 - ☐ Individual decides how to divide between "labor" and "leisure"
 - (Basic models: leisure is all "non-labor," but empirical and theoretical work recently studying the importance of finer categorizations of "non-labor time" for macro issues)
 - □ Labor = $n_t \leftarrow \rightarrow$ leisure $\equiv l_t = 1 n_t$
 - □ Time is now the ..?..

October 12, 2011

Macro Fundamentals

TOWARDS DYNAMIC GENERAL EQUILIBRIUM

 $y_t + (1 + r_t)a_{t-1}$

- \Box Model of non-asset income so far: endowment y_t , possible stochastic
- □ Now suppose y_t is labor income

v = w n

- ☐ Normalize "time available" in each time period to one unit
 - ☐ Individual decides how to divide between "labor" and "leisure"
 - (Basic models: leisure is all "non-labor," but empirical and theoretical work recently studying the importance of finer categorizations of "non-labor time" for macro issues)
 - □ Labor = $n_t \leftrightarrow$ leisure $\equiv l_t = 1 n_t$
 - \Box Time is now the ..?..
- $f \square$ Assert that individuals care about leisure, $u(c_{\scriptscriptstyle t},\ell_{\scriptscriptstyle t})$
 - $u_{ct} > 0$, $u_{lt} > 0$, $u_{cct} < 0$, $u_{llt} < 0$
 - Inada conditions on both c and ℓ
- Sometimes more convenient to represent as $u(c_i, n_i)$
 - $u_{ct} > 0$, $u_{nt} < 0$, $u_{cct} < 0$, $u_{nnt} > 0$ (strictly decreasing and convex in n)

TOWARDS DYNAMIC GENERAL EQUILIBRIUM

☐ Intertemporal optimization problem

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, \mathbf{n}_t^{\mathbf{S}}) \text{ subject to } \quad c_t + a_t = w_t \mathbf{n}_t^{\mathbf{S}} + (1+r_t) a_{t-1}$$

- ☐ Individual takes as given {w_t, r_t}_{t=0,1,2,...} -- price-taker in labor market
 ☐ From perspective of individual, (w,r) evolve as Markov
- Notation n^s emphasizes individual's supply labor
- □ Recursive representation
 - □ State vector in arbitrary period t: $[a_{t-1}; w_t, r_t]$

$$\begin{split} V(a_{t-1}; w_t, r_t) &= \max_{\left\{c_t, n_t^s, a_t\right\}} \left\{ u(c_t, n_t^s) + \beta E_t V(a_t; w_{t+1}, r_{t+1}) \right\} \\ &\text{subject to} \quad c_t + a_t = w_t n_t^s + (1 + r_t) a_{t-1} \end{split}$$

October 12, 2011

Macro Fundamentals

LABOR SUPPLY

☐ Intertemporal optimization problem

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, \mathbf{n}_t^S) \text{ subject to } c_t + a_t = w_t \mathbf{n}_t^S + (1 + r_t) a_{t-1}$$

- - ☐ From perspective of individual, (w,r) evolve as Markov
- □ Notation n^s emphasizes individual's supply labor
- □ Recursive representation
 - State vector in arbitrary period t: $[a_{t-1}; w_{t}, r_t]$ Numeraire object: consumption

$$V(a_{t-1}; w_{t}, r_{t}) = \max_{\left\{c_{t}, n_{t}^{s}, a_{t}\right\}} \left\{u(c_{t}, \frac{n_{t}^{s}}{n_{t}}) + \beta E_{t} V(a_{t}; w_{t+1}, r_{t+1})\right\}$$

subject to
$$c_t + a_t = w_t n_t^s + (1 + r_t) a_{t-1}$$

□ FOCs

$$\begin{array}{ll} \boldsymbol{c_t:} & u_{ct} - \lambda_t = 0 \\ \boldsymbol{n^{S_t:}} & u_{nt} + \lambda_t w_t = 0 \end{array} \right\} \quad - \frac{u_n(c_t, n_t^S)}{u_c(c_t, n_t^S)} = w_t \quad \begin{array}{ll} & \text{CONSUMPTION-LEISURE} \\ \text{OPTIMALITY CONDITION} \\ \text{A static condition} \end{array}$$

LABOR SUPPLY

$$-\frac{u_n(c_t, n_t^S)}{u_c(c_t, n_t^S)} = w_t \qquad \Rightarrow \quad n_t^S = n^S(w_t; c_t)$$

- □ Consumption-leisure (aka consumption-labor) optimality condition
 - □ An intratemporal optimality condition
- \Box Defines period-t labor supply function
 - ☐ For given individual...
 - □ ...but if representative agent, equivalent to aggregate labor supply
 - \Box Note: for given c
- □ **Example:** $u(c,n) = \ln c \frac{\theta}{1+1/\psi} n^{1+1/\psi}$
 - Compute labor supply function?
 - Compute elasticity of n^{s_t} with respect to w_t ?

Frisch elasticity of labor supply

October 12, 2011 1

Macro Fundamentals

PRODUCTION OF GOODS

- □ Representative firm produces the numeraire output good of the economy
- lacksquare A homogenous output good
- □ Perfect competition in goods supply
- □ Inputs
 - □ Labor
 - □ Capital
 - $\hfill \Box$ E.g., machines, factories, computers, intangibles, ...
- \Box Firm produces using a (aggregate) production technology

$$y_t = z_t \cdot f(k_t^D, n_t^D)$$

- \Box k^D the firm's capital demand
- \square n^{D} the firm's labor demand
- ☐ f(.) often assumed CRS (Cobb-Douglas, in particular)
- \Box z_t a process that shifts the production function
- \Box Empirically identify z_t as Solow residual
 - \Box Growth theory: z deterministic
 - ☐ Business cycle theory: z stochastic (Markov)

PRODUCTION OF GOODS

- □ Representative firm profit maximization
 - □ Price taker in capital market, labor market, and output market
 - □ Baseline model(s)
 - ☐ Firm hires/rents labor and capital each period
 - Firm does not "own" any capital or labor (without loss of generality if no financial market imperfections)

$$\max_{n_{t}^{D}, k_{t}^{D}} \left(z_{t} f(k_{t}^{D}, n_{t}^{D}) - w_{t} n_{t}^{D} - r_{t}^{k} k_{t}^{D} \right)$$

- □ FOCs
 - $n^{D}t$: $z_{t}f_{n}(k_{t}^{D}, n_{t}^{D}) w_{t} = 0$
 - $k^{D}_{t}: z_{t}f_{k}(k_{t}^{D}, n_{t}^{D}) r_{t}^{k} = 0$

October 12, 2011 21

Macro Fundamentals

PRODUCTION OF GOODS

- $\begin{tabular}{ll} \square & Representative firm profit maximization \\ \end{tabular}$
 - ☐ Price taker in capital market, labor market, and output market
 - □ Baseline model(s)
 - ☐ Firm hires/rents labor and capital each period
 - Firm does not "own" any capital or labor (without loss of generality if no financial market imperfections)

$$\max_{n_{t}^{D},k_{t}^{D}}\left(z_{t}f(k_{t}^{D},n_{t}^{D})-w_{t}n_{t}^{D}-r_{t}^{k}k_{t}^{D}\right)$$

□ FOCs

 $n^{D}_{t}: z_{t}f_{n}(k_{t}^{D}, n_{t}^{D}) - w_{t} = 0$ **DEFINES** labor demand function $n^{D}(w_{t})$

f rep. firm, equivalent to eggregate

 $k^{D}t$: $z_{t}f_{k}(k_{t}^{D}, n_{t}^{D}) - r_{t}^{k} = 0$ **DEFINES** capital demand function $k^{D}(r^{k}t)$

iggregate actor lemands

- ☐ Firms entirely static entities in baseline macro model(s)
 - Contrast with consumers

CAPITAL SUPPLY

- Baseline model(s)
 - Physical capital takes "time to build"
 - $\ \square$ Simplest: one-period lag between building and using capital
 - **Closed economy**
 - Aggregate capital demand must be supplied domestically
- **Consumer intertemporal optimization problem**

$$\max E_0 \sum_{i=0}^{\infty} \beta^i u(c_i, n_i^S) \text{ subject to } c_i + a_i = w_i n_i^S + (1+r_i) a_{i-1}$$

- $a_{t\cdot 1}$ is a given individual's pre-determined stock of assets Representative agent: $a_{t\cdot 1}$ is economy's pre-determined stock of assets

October 12, 2011

Macro Fundamentals

CAPITAL SUPPLY

- Baseline model(s)
 - Physical capital takes "time to build"
 - ☐ Simplest: one-period lag between building and using capital
 - **Closed economy**
 - □ Aggregate capital demand must be supplied domestically
- Consumer intertemporal optimization problem

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, n_t^S) \text{ subject to } c_t + a_t = w_t n_t^S + (1 + r_t) a_{t-1}$$

- $a_{t\text{-}1}$ is a given individual's pre-determined stock of assets
- Representative agent: a_{t-1} is economy's pre-determined stock of assets
- Capital-market clearing in each period t

$$k_t^D = a_{t-1} \left(= k_t^S \right)$$

CAPITAL SUPPLY

- □ Baseline model(s)
 - Physical capital takes "time to build"
 - ☐ Simplest: one-period lag between building and using capital
 - Closed economy
 - □ Aggregate capital demand must be supplied domestically
- □ Consumer intertemporal optimization problem

$$\max E_0 \sum_{i=0}^{\infty} \beta^i u(c_i, n_i^S) \text{ subject to } c_i + a_i = w_i n_i^S + (1+r_i) a_{i-1}$$

- \square a_{t-1} is a given individual's pre-determined stock of assets
- lacktriangledown Representative agent: $a_{t,1}$ is economy's pre-determined stock of assets
- □ Capital-market clearing in each period t

$$k_t^D = a_{t-1} \left(= k_t^S \right)$$

- Capital depreciates at rate δ each period
 - Economic depreciation, due to physical wear and tear of production
 - Not accounting depreciation
 - □ Compensation reflected in capital-market-clearing price: $r_t = r^{k_t} \delta$

October 12, 2011

Macro Fundamentals

CAPITAL SUPPLY

- \Box Capital depreciates at rate δ each period
 - Compensation reflected in capital-market-clearing price: $r_t = r^k_t \delta$
- ☐ Implies capital supply has to be periodically replenished
 - ☐ From where?
- □ Consumer intertemporal optimization problem

$$\max E_0 \sum_{s=0}^{\infty} \beta^t u(c_t, n_t^S) \text{ subject to } c_t + a_t = w_t n_t^S + (1 + r_t) a_{t-1}$$

□ Euler equation

$$u'(c_t) = \beta E_t \left\{ u'(c_{t+1})(1 + r_{t+1}^k - \delta) \right\}$$

- □ From perspective of single individual: characterizes optimal savings (flow!) decision between t and t+1
- ☐ From perspective of entire economy: characterizes optimal investment (flow!) in capital stock between *t* and *t*+1
- ☐ Closed economy: domestic savings = domestic investment
- Note timing: savings/investment decisions in t alter the available capital stock in period t+1 ("time to build")

TOWARDS DYNAMIC GENERAL EQUILIBRIUM

- □ Round out final details
- □ Baseline model(s)
 - Consumption goods and capital goods are freely interchangeable
 - i.e., capital good in a given period can be "dismantled" and used for consumption in future periods
 - No irreversibility of investment process
 - ☐ Implies relative price (not interest rate...) of capital = ...?...
- □ CRS production process f(k,n), firms earn profits = ...?...
 - □ Corollary: factors of production are paid ...?...

October 12, 2011 2

Macro Fundamentals

TOWARDS DYNAMIC GENERAL EQUILIBRIUM

- Round out final details
- □ Baseline model(s)
 - □ Consumption goods and capital goods are freely interchangeable
 - i.e., capital good in a given period can be "dismantled" and used for consumption in future periods
 - No irreversibility of investment process
 - ☐ Implies relative price (not interest rate...) of capital = ...?...
- □ CRS production process f(k,n), firms earn profits = ...?...
 - ☐ Corollary: factors of production are paid ...?...
- □ Labor-market clearing

 $\mathbf{n_t} \equiv \mathbf{n^{D}_t} = \mathbf{n^{S}_{t,}} \ \forall \ \mathbf{t}$ (with clearing price w_t)

□ Capital-market clearing

 $\mathbf{k_t} \equiv \mathbf{k^{D}_t} = \mathbf{k^{S}_t}, \forall \mathbf{t}$ (with clearing price r^k_t)

☐ Goods market clearing

 $c_t + k_{t+1} - (1-\delta)k_t = z_t f(k_t, n_t), \forall t \text{ (with clearing price = ...?...)}$

DYNAMIC GENERAL EQUILIBRIUM

- Economy-wide state vector in period t: (k_{ij}, z_{i})
- □ Consider $T \to \infty$
- Definition: a dynamic stochastic general equilibrium is time-invariant state-contingent price functions $w(k_{ii}, z_{i})$, $r^{k}(k_{ii}, z_{i})$ and state-contingent consumption, labor, and (one-period-ahead) capital decision rules $c(k_{ii}, z_{i})$, $n(k_{ii}, z_{i})$, and $k(k_{ii}, z_{i})$ that jointly satisfy the following:

October 12, 2011

Macro Fundamentals

DYNAMIC GENERAL EQUILIBRIUM

- \Box Economy-wide state vector in period t: (k_i, z_i)
- □ Consider $T \to \infty$
- Definition: a dynamic stochastic general equilibrium is time-invariant state-contingent price functions $w(k_{ii}, z_i)$, $r^k(k_{ii}, z_i)$ and state-contingent consumption, labor, and (one-period-ahead) capital decision rules $c(k_{ii}, z_i)$, $n(k_{ii}, z_i)$, and $k(k_{ii}, z_i)$ that jointly satisfy the following:
 - 1. (Consumer optimality) Given $w(k_{ij},z_{i})$, $r^{k}(k_{ij},z_{i})$, the functions $c(k_{ij},z_{i})$, $n(k_{ij},z_{i})$, and $k(k_{ij},z_{i})$ solve the Euler equation (replaced by TVC as $T\to\infty$), labor supply function, and flow budget constraint of the representative consumer
 - 2. (Firm optimality) Given $w(k_{il}\ z_l),\ r^k(k_{il}\ z_l)$, the function $n(k_{il}\ z_l)$ satisfies the labor demand function and k_l satisfies the capital demand function
 - 3. (Markets clear)
 - ☐ Labor-market clearing

 $n(k_t; z_t) \equiv n^{D_t} = n^{S_t}, \forall t$

- Capital-market clearing
- $k_t \equiv k^D_t = k^S_t, \forall t$
- ☐ Goods market clearing

 $c(k_t; z_t) + k(k_t; z_t) - (\mathbf{1} - \delta)k_t = z_t \cdot f(k_t; n(k_t; z_t)), \forall \mathbf{t}$

given the initial capital stock k_0 and (Markov) transition process for $z_t \rightarrow z_{t+1}$