STOCHASTIC CONSUMPTION-SAVINGS MODEL: CANONICAL APPLICATIONS

SEPTEMBER 14, 2011

C۲	
	Optimal period-1 (current) consumption
	$c_1 = A + B \cdot (y_1 + (1 + r_0)a_0) + C \cdot E_1 y_2$
	 Depends only on the mean of risky future income, <i>E</i>₁<i>y</i>₂ Independent of second- and higher-moments of risky future income
	Distribution function G (.) of period-2 income
	$y_{2} = \begin{cases} y_{2}^{H} \text{ probability } q \\ \overline{y}_{2} \text{ probability } p \\ y_{2}^{L} \text{ probability } 1\text{-p-q} \end{cases} \qquad $
	Certainty Equivalence
	$\square \qquad \text{Mean-preserving spreads of } \boldsymbol{G}(.) \text{ do not affect optimal choice of } \boldsymbol{c}_1$
	$\Box \text{E.g., } (p = 1, q = 0)$
	Period-2 income has no risk But c. is identical
	Set of is identical Set of is identical

Use (so	lution to) stochastic two-period model to illustrate some		
basic results and ideas in			
	set pricing research		
Certainty-equivalent consumption			
Ass	suming αc^2		
	Quadratic period-utility $u(c) = \gamma c - \frac{1}{2}$		
	Risk-free asset returns		
	Risky period-2 income (with arbitrary distribution)		
Risk av	ersion		
Precaut	ionary savings		
Introdu	iction to asset pricing		

		Stochastic Consumption-Savings Model: Applicatio	
Pr	RECA	UTIONARY SAVINGS	
	Cert	ainty-equivalent consumption	
		Current consumption depends only on the mean of future risky incom Most important assumption: quadratic utility	
	Risk	aversion (within period) with $v(c_1, c_2) = u(c_1) + u(c_2) = \gamma c_1 - \frac{\alpha c_1^2}{2} + \gamma c_2 - \frac{\alpha c_2^2}{2}$?	
		Obviously \neq 0! (whether RRA or ARA)	
		So why certainty equivalence?	
	Març inco	ginal utility function of order one (or lower) <u>implies</u> risk on future me doesn't matter for current consumption	
		Contrapositve	
	Risk utili	on future income matters for current consumption <i>implies</i> marginal by function must be strictly convex	
	u '''(c) > 0 necessary for breaking certainty-equivalence result		
		(Given $u'(.) > 0$ and $u''(.) < 0$)	
		$u^{\prime\prime\prime}(.) > 0 \rightarrow u^{\prime\prime}(.)$ increasing in $c \rightarrow u^{\prime}(.)$ decreasing less quickly as c^{\uparrow}	
		Not satisfied by quadratic utility	

PF	RECAUTIONARY SAVINGS	
	$u'''(c) > 0 \rightarrow$ current consumption depends on distribution $G(.)$ of future	e ris
	Optimal c 1 is smaller than certainty-equivalent c 1 Proof:	
	Implication: optimal s_1 is larger than certainty-equivalent s_1	
	Implication: optimal s_1 is larger than certainty-equivalent s_1 Precautionary Savings	
	Implication: optimal <i>s</i> ₁ is larger than certainty-equivalent <i>s</i> ₁ Precautionary Savings Risk about the future induces prudent (cautious) choices in the present	
	Implication: optimal s1 is larger than certainty-equivalent s1 Precautionary Savings Risk about the future induces prudent (cautious) choices in the present Desire to build up a buffer stock of assets to ensure c does not fall too low in the future induces for the future induces for the future induces to ensure c does not fall too low in the future induces for the futur	futu
	 Implication: optimal s₁ is larger than certainty-equivalent s₁ Precautionary Savings Risk about the future induces prudent (cautious) choices in the present Desire to build up a buffer stock of assets to ensure c does not fall too low in fall kaversion a necessary, but not sufficient, feature of preferences Strictly convex marrinal willing the kay feature of preferences 	futu
	 Implication: optimal s₁ is larger than certainty-equivalent s₁ Precautionary Savings Risk about the future induces prudent (cautious) choices in the present Desire to build up a buffer stock of assets to ensure c does not fall too low in fall kaversion a necessary, but not sufficient, feature of preferences Strictly convex marginal utility the key feature of preferences Classic papers: Kimball (1990 Econometrica), Sandmo (1970 Review of Econometrica) 	futu o <i>mi</i> o
	 Implication: optimal s₁ is larger than certainty-equivalent s₁ Precautionary Savings Risk about the future induces prudent (cautious) choices in the present Desire to build up a buffer stock of assets to ensure c does not fall too low in f Risk aversion a necessary, but not sufficient, feature of preferences Strictly convex marginal utility the key feature of preferences Classic papers: Kimball (1990 Econometrica), Sandmo (1970 Review of Econometrica) How to measure precautionary savings motive? 	futu
	 Implication: optimal s₁ is larger than certainty-equivalent s₁ Precautionary Savings Risk about the future induces prudent (cautious) choices in the present Desire to build up a buffer stock of assets to ensure c does not fall too low in f Risk aversion a necessary, but not sufficient, feature of preferences Strictly convex marginal utility the key feature of preferences Classic papers: Kimball (1990 Econometrica), Sandmo (1970 Review of Econometrica) How to measure precautionary savings motive? Need to capture something about convexity of marginal utility 	futu Domio

