STOCHASTIC CONSUMPTION-SAVINGS MODEL: FURTHER APPLICATIONS

SEPTEMBER 19, 2011

	Stochastic Consumption-Savings Model: Applications
AF	PLICATIONS
	Use (solution to) stochastic two-period model to illustrate some basic results and ideas in Consumption research Asset pricing research
	Subjective discount factor
	Lifetime "tilt" of consumption
	Competitive pricing of Arrow-Debreu assets
	Consumption-smoothing revisited
	Fiscal policy applicationsRicardian EquivalenceConsumption Taxation
Sep	tember 19, 2011 2

Sι	JBJECTIVE DISCOUNT FACTOR			
	Impatience potentially an issue when taking a serious view of time			
	Individuals (i.e., consumers) are impatient			
	□ All else equal, would rather have outcome <i>X</i> today than identical outcome <i>X</i> at some future date			
	An introspective statement about the world			
	An empirical statement about the world			
	Subjective discount factor	,		
	A simple model of individuals' impatience about utility impatience			
	\square β (a scalar in [0,1]) measures impatience			
	$\Box \text{The smaller is } \boldsymbol{\beta}, \text{ the less does individual value future utility}$			
	Simple assumption about how "impatience" builds up over time			
	 Multiplicatively: i.e., discount one period ahead by β, discount two periods ahead by β², discount three periods ahead by β³, etc. 			
	Do individuals' impatience really build up over time in this geometric way?			
	Hyperbolic discounting likely a better model (later)			

$\mathbf{c}_{1}: u'(c_{1}) - \lambda_{1} = 0$ $\mathbf{c}_{1}: -\lambda_{1} + \boldsymbol{\beta} E_{1} \left\{ \lambda_{2} (1 + \beta) \right\}$	Marginal value of period-1 resources = marginal utility of c_1 (j) = 0 Euler equation
$\boldsymbol{\mu}_1: -\boldsymbol{\lambda}_1 + \boldsymbol{\beta} \boldsymbol{E}_1 \big\{ \boldsymbol{\lambda}_2 (1+\boldsymbol{\mu}) \big\}$	$\{i\} = 0$ Euler equation
	,
$f: \beta u'(c_2^H) - \beta \lambda_2^H =$ $f: \beta u'(c_2^M) - \beta \lambda_2^M =$ $\vdots \beta u'(c_2^L) - \beta \lambda_2^L = 0$	 a) Marginal value of period-2 resources = marginal utility of c₂ b) IMPORTANT: Holds state-by-state (and thus also holds in expectation)
alyze (2) Express as an as Price in period 1 d	set-pricing condition $1 = E_1 \left\{ \frac{\beta \lambda_2}{\lambda_1} (1 + r_1) \right\}$
·	Note covariance between (λ_2/λ_1) and $(1+r_1)$
	$f: \beta u'(c_2^M) - \beta \lambda_2^M = \beta u'(c_2^L) - \beta \lambda_2^L = 0$ is $\beta u'(c_2^L) - \beta \lambda_2^L = 0$ alyze (2) Express as an ass Price in period 1 of

Suppose no income risk and no interest rate risk			
-	$y_2^H = \overline{y}_2 = y_2^L = y_2$	$r_1^H = \overline{r_1} = r_1^L = r_1$	
	i.e., back to determinist	ic case	
Insert in definition of solution to intertemporal problem Solution to consumer problem is an asset position and consumption profile (c_1,c_2,a_1) that satisfies			
	Period-1 budget constraint	$c_1 + a_1 = y_1 + (1 + r_0)a_0$	
	Period-2 budget constraint	$c_2 + a_2 = y_2 + (1 + r_1)a_1$	
	Euler equation	$u'(c_1) = \beta u'(c_2)(1+r_1)$	aka consumption-savings optimality condition
tak	ing as given $\left(r_{1};y_{1},y_{2},a_{0},r_{0} ight)$		
		K)	

Af	PPLICATIONS	
	Use (solution to) stochastic two-period model to illustrate so basic results and ideas in Consumption research Asset pricing research	ome
	Subjective discount factor	
	Lifetime "tilt" of consumption	
	Competitive pricing of Arrow-Debreu assets	
	Consumption-smoothing revisited	
	Fiscal policy applications Ricardian Equivalence Consumption Taxation	
Sep	stember 19, 2011	14

Definition: $m^{j} = R^{j}/p^{j}$ is discount factor for state j
\Rightarrow m^{j} = 1 $\forall j$ under competitive AD markets
Intratemporal consumption-smoothing
$u_2^j) = u'(c_2^k) \implies c_2^j = c_2^k \forall j, k \in \{1, 2, 3,, S\}$ under competitive AD markets
State-contingent period-2 consumption equated across all states
Period-2 income risk fully insured away!
Period-2 consumption the same no matter the realization of risk
$\Rightarrow c_2 = c_2^j = c_2^k = \underline{E}_1 c_2, \forall j, k \in \{1, 2, 3,, S\} \text{ with certainty!}$
"Full consumption insurance"

	Business cycle models		
	Growth models		
	An application of basic consumer theory		
Basic issues/results/questions			
	Intertemporal substitution of consumption		
	Risk aversion		
	Precautionary savings		
	Consumption smoothing (over dates and over states) via financial assets		
	Subjective discount factor		
Ass inte	et pricing can be (but need not be) studied as the flip side of rtemporal consumption theory		

		<u> </u>		
	Intertemporal consumption model the backbone of modern macro models			
	Business cycle models			
	Growth models			
	An application of basic consumer theory			
	Basic issues/results/questions			
	Intertemporal substitution of consumption			
	Risk aversion			
	Precautionary savings			
	Consumption smoothing (over dates and over states) via financial ass	ets		
	Subjective discount factor			
ב	Asset pricing can be (but need not be) studied as the flip side of intertemporal consumption theory	f		
	Empirical validity of baseline intertemporal consumption model?			
	Empirical validity of baseline asset pricing theory?			
	Next			
	Extension to infinite horizon			
	Introduction to dynamic programming			