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Introduction

DYNAMIC PROGRAMMING

a Can we represent intertemporal problems recursively?
a Rather than sequentially

a Benefits

a Allows application of series of theorems/results that guarantee a
solution exists in the space of functions

a Allows application of series of theorems/results that help find solution
in the space of functions

a Computational algorithms require it — computers can’t handle infinite-
dimensional objects!

a Costs
a May rule out some solutions to the original (sequential) problem
a Requires (a lot?) more structure on the problem
a Sometimes (often?) not obvious how to recast sequential problem as

recursive problem
a Ljunggvist and Sargent (2004, p. 16)

“The art in applying recursive methods is to find a convenient definition of a state. Itis
often not obvious what the state is, or even whether a finite-dimensional state exists.”
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Introduction

DYNAMIC PROGRAMMING

a Can we represent intertemporal problems recursively?
a Rather than sequentially

a Benefits

a Allows application of series of theorems/results that guarantee a
solution exists in the space of functions

a Allows application of series of theorems/results that help find solution
in the space of functions

a Computational algorithms require it — computers can’t handle infinite-
dimensional objects!

a Costs
a May rule out some solutions to the original (sequential) problem
a Requires (a lot?) more structure on the problem

a Sometimes (often?) not obvious how to recast sequential problem as
recursive problem

a Start with deterministic case
a (Fairly) straightforward
a Stochastic case requires more structure
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Deterministic Dynamic Programming

FROM SEQUENTIAL TO RECURSIVE

a Lagrangian of consumer problem, with planning horizon T

V(e i) = max YA u(e) + A (Y + @+ h)a, —c -a) ]

{eadis 2o

m} State variables of consumer problem at beginning of any period s
m) a,_, (accumulation variable) — the critical one b/c a,, > s, are choices
m] r. (price-taker)

m) A sufficient summary of the dynamic position of the environment in
which the consumer operates
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Deterministic Dynamic Programming

FROM SEQUENTIAL TO RECURSIVE

a Lagrangian of consumer problem, with planning horizon T

Vi(a,n;) = max > B u(e)+ A4 (Yo + @+ n)a, —c —a) ]

Cac g t=0

) State variables of consumer problem at beginning of any period s
m] a,_; (accumulation variable) — the critical one b/c a,, 7> s, are choices
m) r, (price-taker)

a A sufficient summary of the dynamic position of the environment in
which the consumer operates

a Define V9(a_,, ry;.) as value function starting from period zero
m) The maximized value of the constrained optimization problem
m) As function of period-zero parameters of the problem

a Goal: recast problem of finding optimal sequence {¢;, @}t-012, 1
into problem of finding functions {Vi()} 012, .7
a (Actually, find Vi(.) along with two other functions)
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Deterministic Dynamic Programming

FROM SEQUENTIAL TO RECURSIVE

a Write out more explicitly

u(co)+/10(y0 +(1+ r—l)a—l_co _ao)

Vo(a,,r;)= max LI
T aaal, +> Bluc)+ A4 (v +@+r)a,—c —a)]
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Deterministic Dynamic Programming

FROM SEQUENTIAL TO RECURSIVE

a Write out more explicitly

U(Co)+/7~o()’o +(1+ r—l)a—l_co _ao)

Voa,,r;)= max T
v [ +Z:Bl|:u(ct)+/71(yt+(1+ rt—l)at—l_ct_at)}
t=1

l Separate terms

Vo(afv ro;-) = rc?%g({u(co)"'io(yo +(1+ r_1)a_1_co _ao)}

:
*’I.?%X{ max 3 ' [u(@)+ 4 (% + W+ ), =6, —at)]} s e

{eoads =1 the max

l Adjust B factors
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Deterministic Dynamic Programming

FROM SEQUENTIAL TO RECURSIVE

V°(afl, ro;-) = rP%ﬂx{u(co)+/10 (YO +(1+ r—l)a—l -G _ao)}

Adjust B

factors T

— rp«'g{{gﬂa& 2 A uE) + A (Y + A+ ra ¢ —«%)}}
0 B t=1

_

—~
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Deterministic Dynamic Programming

FROM SEQUENTIAL TO RECURSIVE

Vo(afv ;) = Taaﬂx{u(co)"'ﬂo (yo +(1+r)a, —¢ _ao)}

Adjust B
factors T
t-1
——  +f-maxs max > A7 [u(e)+ A (Y + A+ n,)a, -6 -a) |
0% [leals =
N —

Vo(a_,,ry;.) is value function = Vi(a,,r,;.), value function starting from period 1.
starting from period O. The value resulting from optimal decisions starting from
Bellman Principle of Optimality: period 1.

optimal decisions in the initial
period induce a future state, from
which (future) decisions are
optimal (Bellman, 1957)
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Deterministic Dynamic Programming

FROM SEQUENTIAL TO RECURSIVE

V°(a71, ro;-) = T%ﬂx{u(co)+/10 (YO +(1+ r—l)a—l -G _ao)}

Adjust B
factors T
t-1
——  +pmaxd max > A7 u(e) + A (Y + @+ n)a, -6 -,) ]
@ | fal
— _

Vo(a_,,ry;.) is value function = Vi(ay,r,;.), value function starting from period 1.
starting from period O. The value resulting from optimal decisions starting from
Bellman Principle of Optimality: period 1.

optimal decisions in the initial
period induce a future state, from
which (future) decisions are
optimal (Bellman, 1957)

Vo(a,,r;)= rcnaaox{u(co)+/10(y0 +(@+r,)a, —C )+ BV (a, rl;.)}

Recursive representation of consumer problem

a Bellman Equation

a Can analyze optimization problem for period zero...
Q ...given Bellman Principle of Optimality holds
[m] (But how do V°(.) and V1(.) relate to each other?)
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Deterministic Dynamic Programming

BELLMAN EQUATION

a Bellman Equation

Vo(a,, )= rg.jgoX{U(co)Mo(yo Frr)a, —c—ay)+ AV (@)

Starting point for recursive analysis
Applicable to finite T-period or T — oo problems

a Construction requires identifying state variables of optimization
problem

Q
Q

a T-period problem
a Solution involves sequence of functions V°(.), VX(.), ..., VT1(.), VT(.)
a Vi(.) functions in general will differ — reflecting time until end of
planning horizon
a E.g., maximized value starting from age = 60 different from maximized
value starting from age = 30 (intuitively)

a Infinite-horizon problem hasti 5
O  Deterministic case: V() = Vi(.) = Vi()Vij Srochastic case:
O  Always an infinity of periods left to go Requires more structure...
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Deterministic Dynamic Programming

BELLMAN EQUATION

a Bellman Equation (for T — o)
V(a,,r;.)= rzga%x{u(co)ﬁ,o(y0 +(1+r)a, —Co—a)+ BV (1)}

a Use to characterize optimal decisions
a Period-O FOCs

o U'(C))—4, =0
a,: _2'0 +ﬂ\/l(aO, r; ) =0 How to compute V,;(.)?
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Deterministic Dynamic Programming

BELLMAN EQUATION

a Bellman Equation (for T — o0)
v (a—l’ To: ) = Ta%x{u(co) +ﬂo(yo + (1+ r-1)a-1 —Co _ao)+ﬂ‘v (aw rl;')}

a Use to characterize optimal decisions
a Period-0 FOCs

e U'(C,) =4 =0

a,: _,10 +ﬂ\/l(a0, r; ) =0 How to compute V;(.)?
a Suppose optimal choice characterized by ¢, = c(a_,;.), ap = a(a_;;.)
ﬁfltsum o (e(.) and a(.) time-invariant functions in infinite-period problem)

a Insert in value function (can now drop max operator)

\Y (aﬁl, f ) = U(C(afl)) + ﬂo (yo + (1+ r71)a71 - C(af1) - a(afl))"" ﬂ -V (a(afl)’ n; )

a Now compute marginal
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Deterministic Dynamic Programming

BELLMAN EQUATION

a Bellman Equation (for T — o)

\Y (afll f ) = U(C(afl)) + ﬂ'o (yo + (1+ r71)a71 - C(af1) - a(af1)) + ﬂ v (a(afl)r n; )
a Now compute marginal (suppress r argument of ¢(.) and a(.) functions)

Vl(a—l’ ro;-) =
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Deterministic Dynamic Programming

BELLMAN EQUATION

a Bellman Equation (for T — o0)

V(ahi)=u(c@y)+ 4 (Y + @+ ry)a, —ca,)-a(@,))+B-V(a(a,).5:)

a Now compute marginal (suppress r argument of ¢(.) and a(.) functions)

Vl(afl’ ro;-) =
V(a. r:)= Envelope
= Vi@, )= Condition
a Envelope Theorem
Note: envelope (] In computing first-order effects of changes in a problem’s parameters
theorem has on the maximized value, can ignore how optimal choices will adjust
nothing to do ’ 9 p Jus
with dynamic [u] Intuition: because already at a max (marginal costs = marginal benefits)
programming o Need only consider the direct effect
September 26, 2011 15

Deterministic Dynamic Programming

BELLMAN EQUATION

a Bellman Equation (for T — o)
\Y (afll f ) = U(C(afl)) + ﬂo (yo + (1+ r71)a71 - C(af1) - a(af1)) + ﬂ v (a(afl)! n; )
a Use to characterize optimal decisions

a Period-0 FOCs, now evaluated using c(a_,), a(a_,)
@ u'(c(a,))-4=0
a0 —Ay+BVy(a,(a,),5;) =0 - u'(c@,))=Al+ru(ca)

Env: V (a(a,),n;.)=40+r)

a Seems like usual Euler equation from sequential analysis
(deterministic)...
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Model Solution

DETERMINISTIC — RECURSIVE ANALYSIS

a Solution of infinite-horizon consumer problem (starting from date zero)...

a ...Is a consumption decision rule c(a_,;.), asset decision rule a(a_,;.), and

value function V(a_,;.) that satisfies
a Bellman equation

\Y (8.71, ro;-) = U(C(aq)) + /10 (yo + (1+ [1)3-71 - C(a—l) - a(afl)) + ﬂ -V (a(a71)l s )

a Euler equation
by envelope theorem

u'c(a,))=p(@,).n;) = u'c(a,)=pa+ruic(a,)
@ which is the TVC in the limit ¢ c0:  |im pu'c(a,))-ala ,)=0

a Budget constraint

Yot (1+ r—l)a—l - C(aq) - a(a—l) =0

taking as given(a_l, Iy r_l)
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Model Solution

DETERMINISTIC — SEQUENTIAL ANALYSIS

a Solution of infinite-horizon consumer problem (starting from date zero)...

* *)® - -
a is a consumption and asset sequence {(:t 8, } that satisfies
t=0

a Sequence of flow budget constraints
c +a =Yy, +@+r )a,, t=012,..
a Sequence of Euler equations

u'E) = AU(cr ) A+ 1), t=012,..

O  whichis the TVC in the limit t = o0: lim B'u'(c;)a =0
tow

taking as given ({q, yt}:O=0 Ay, ':1)

Does solution to recursive problem coincide with solution to
sequential problem?
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Deterministic Dynamic Programming

RECURSIVE VS. SEQUENTIAL ANALYSIS

a Does solution to recursive problem coincide with solution to sequential
problem?

a Does solution to sequential problem coincide with solution to recursive
problem?
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Deterministic Dynamic Programming

RECURSIVE VS. SEQUENTIAL ANALYSIS

a Does solution to recursive problem coincide with solution to sequential
problem?

a Does solution to sequential problem coincide with solution to recursive
problem?

a In constructing Bellman representation (T — oo case), the imposition of time-
invariant functions c(a), a(a) potentially limits the class of solutions

Q In original sequential formulation, this is neither explicitly nor implicitly a
requirement of the solution!

a In general (here without proof...)
Q Solution to the sequential problem is also a solution to the recursive problem

Q Solution to the recursive problem is also a solution to the sequential problem
provided some further regularity conditions hold

a Stokey, Lucas, Prescott text (1989)
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Dynamic Programming

RECURSIVE VS. SEQUENTIAL ANALYSIS

a So why go recursive?

a Allows application of series of theorems/results that guarantee a
solution exists in the space of functions

a Allows application of series of theorems/results that help find solution

Underlying in the space of functions
theory:

Contraction Mapping Theorem, Blackwell’s Sufficient Conditions for a Contraction, Theorem of the Maximum

a Computational algorithms require it — computers can’t handle infinite-
dimensional objects!

a Econ 701, 702, 630: various computational algorithms
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Dynamic Programming

RECURSIVE VS. SEQUENTIAL ANALYSIS

a So why go recursive?

a Allows application of series of theorems/results that guarantee a
solution exists in the space of functions

a Allows application of series of theorems/results that help find solution

Underlying in the space of functions
theory:

Contraction Mapping Theorem, Blackwell’s Sufficient Conditions for a Contraction, Theorem of the Maximum

a Computational algorithms require it — computers can’t handle infinite-
dimensional objects!

O Econ 701, 702, 630: various computational algorithms

a Can’t really “choose” whether want to analyze problem
sequentially or recursively
Q All but the most limited of problems/models require computational solution
Q In which case model analysis is recursive

a What about stochastic dynamic programming?
a Even more structure required....
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Dynamic Programming

STOCHASTIC DYNAMIC PROGRAMMING

a Even more structure required on the problem to recursively solve
dynamic stochastic optimization problems

a Main (new) technical problem
a Branching of event tree at each of T periods (possibly T — o)

a Main technical solution/assumption
a Assume risk follows Markov process

a Which enables series of theorems/results from deterministic dynamic
programming to work in stochastic case...

a ...given further technical regularity assumptions (Econ 602)

a Illustrate the technical problem by building on the stochastic two-
period model
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