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BASICS OF DYNAMIC PROGRAMMING 
(CONTINUED)
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RECURSIVE REPRESENTATION

Macro Fundamentals

State variables
A sufficient summary, as of the start of period t, of the dynamic 
position of the environment in which the maximizing agent operates

“Environment” of the agent – what needs to be known in order to 
optimize in period t? 

Individual-specific quantities
Market prices
Government policies
(Fixed structural parameters – will omit from state vector for parsimony)

“Sufficient” – there are no other objects (quantities, prices, govt
policies, etc.) that must be known in order to optimize in period t

Concept well-defined for both finite-T and T → ∞ problems

Period-t decisions are function of the period-t state variables

Ljungqvist and Sargent (2004, p. 16)
“The art in applying recursive methods is to find a convenient definition of a state.  It is 
often not obvious what the state is, or even whether a finite-dimensional state exists.”

The usual 
suspects

Important:  states can be 
endogenous or exogenous
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RECURSIVE REPRESENTATION

Macro Fundamentals

State variables
A sufficient summary, as of the start of period t, of the dynamic 
position of the environment in which the maximizing agent operates

“Environment” of the agent – what needs to be known in order to 
optimize in period t? 

Individual-specific quantities
Market prices
Government policies
(Fixed structural parameters – will omit from state vector for parsimony)

“Sufficient” – there are no other objects (quantities, prices, govt
policies, etc.) that must be known in order to optimize in period t

Concept well-defined for both finite-T and T → ∞ problems

KEY: Period-t decisions are function of the period-t state variables

Ljungqvist and Sargent (2004, p. 16)
“The art in applying recursive methods is to find a convenient definition of a state.  It is 
often not obvious what the state is, or even whether a finite-dimensional state exists.”

The usual 
suspects

Important:  states can be 
endogenous or exogenous
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Bellman Equation

Starting point for recursive analysis
Applicable to finite T-period or T → ∞ problems
Construction requires identifying state variables

T-period problem
Solution involves sequence of functions V0(.), V1(.), … , VT-1(.), VT(.)
Vi(.) functions in general will differ – reflecting time until end of 
planning horizon
E.g., maximized value starting from age = 60 different from maximized 
value starting from age = 30 (intuitively)

Infinite-horizon problem (“stationary” environment)
Deterministic case:  V(.) ≡ Vi(.) = Vj(.) ∀ i,j
Always an infinity of periods left to go

BELLMAN EQUATION

Deterministic Dynamic Programming

( ){ }
0 0

0 0 0 1 1 0
0 1

1 0 0 10,
( , ;.) (max ( , .)) ) ;(1

c a
u c y rV a a cr Va a rλ β− −− + + + − − + ⋅≡
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Bellman Equation (for T → ∞)

Use to characterize optimal decisions

Period-0 FOCs, evaluated using time-invariant c(a-1), a(a-1)

c0:

a0:

Env:

Seems like usual Euler equation from sequential analysis 
(deterministic)…

BELLMAN EQUATION

Deterministic Dynamic Programming

1 0( ))'( 0u c a λ− − =

1 10 0 1( ( ), . 0; )V a a rλ β −− + =

1 1 1 01( ( ), ; (1 ).)V a a r rλ− +=

( ){ }
0 0

1 0 0 00 0 01 1 0 1,
( , ;.) max ( ( , .)1 ;) ( )

c a
V c c aa r u y r a V a rλ β− − −≡ + + + − − + ⋅

1 00'( ) (1 )( )( )'()u r uc a c aβ− = +
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Bellman Equation (for T → ∞)

Seems like a two-period problem
In terms of (value) functions, not in terms of choice variables
Optimize in current period
Optimize next period (Bellman’s Principle of Optimality)

BELLMAN EQUATION

Notation

( )1 0 0 0 1 11 1 1 1 1( , ;.) ( )( ) ( ) ( ) ( ( ), ;1 )( .)V a r u y r ac a c a a a V a a rλ β− − − −− − −≡ + + + − − + ⋅
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Bellman Equation (for T → ∞)

Seems like a two-period problem
In terms of (value) functions, not in terms of choice variables
Optimize in current period
Optimize next period (Bellman’s Principle of Optimality)

Common notation
Use x for current-period variables
Use x’ for next-period variables

Bellman Equation

Euler equation

BELLMAN EQUATION

Notation

( )1 0 0 0 1 11 1 1 1 1( , ;.) ( )( ) ( ) ( ) ( ( ), ;1 )( .)V a r u y r ac a c a a a V a a rλ β− − − −− − −≡ + + + − − + ⋅

( )1( , ;.) ( ) (1 )( ) ( ) ( ) ( ( ), ';.)c a c a a a VV a r u y r a aa rλ β−≡ + + + − − + ⋅

= c = c = a’ = a’

'( ) (1 )( ) ')' )((c a r u cu aβ= +

= c = c’
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RECURSIVE VS. SEQUENTIAL ANALYSIS

Dynamic Programming

So why go recursive?

Allows application of series of theorems/results that guarantee a 
solution exists in the space of functions
Allows application of series of theorems/results that help find solution 
in the space of functions

Suppose V(.) exists
Procedure for finding V(.) and associated decision rules:  iterate on Bellman 
Equation starting from any arbitrary initial guess – call it V1(.)

( ){ }
, '

1( , ;.) max ( ) ( ' ( ', ';1 ) .)
ac

c c a VV a r u y r a raλ β≡ + + + − − + ⋅

initial guess (some 
parametric form)

Contraction Mapping Theorem, Blackwell’s Sufficient Conditions for a Contraction, Theorem of the Maximum 

Underlying 
Theory:
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RECURSIVE VS. SEQUENTIAL ANALYSIS

Dynamic Programming

So why go recursive?

Allows application of series of theorems/results that guarantee a 
solution exists in the space of functions
Allows application of series of theorems/results that help find solution 
in the space of functions

Suppose V(.) exists
Procedure for finding V(.) and associated decision rules:  iterate on Bellman 
Equation starting from any arbitrary initial guess – call it V1(.)

Conduct maximization
Gives functions c(a) and a(a)
These are candidate (optimal) decision rules

Insert candidate c(a) and a(a) into RHS of Bellman Equation – generates V2(.)

Does V2(.) = V1(.)?  

( ){ }
, '

1( , ;.) max ( ) ( ' ( ', ';1 ) .)
ac

c c a VV a r u y r a raλ β≡ + + + − − + ⋅

initial guess (some 
parametric form)

Contraction Mapping Theorem, Blackwell’s Sufficient Conditions for a Contraction, Theorem of the Maximum 

Underlying 
Theory:
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RECURSIVE VS. SEQUENTIAL ANALYSIS

Dynamic Programming

So why go recursive?

Allows application of series of theorems/results that guarantee a 
solution exists in the space of functions
Allows application of series of theorems/results that help find solution 
in the space of functions

Suppose V(.) exists
Procedure for finding V(.) and associated decision rules:  iterate on Bellman 
Equation starting from any arbitrary initial guess – call it V1(.)

Conduct maximization
Gives functions c(a) and a(a)
These are candidate (optimal) decision rules

Insert candidate c(a) and a(a) into RHS of Bellman Equation – generates V2(.)

Does V2(.) = V1(.)?  If yes, stop.  Have found V(.) ( = V2(.) = V1(.) )

( ){ }
, '

1( , ;.) max ( ) ( ' ( ', ';1 ) .)
ac

c c a VV a r u y r a raλ β≡ + + + − − + ⋅

initial guess (some 
parametric form)

If no, insert 
V2(.) on RHS 
and repeat

Contraction Mapping Theorem, Blackwell’s Sufficient Conditions for a Contraction, Theorem of the Maximum 

Underlying 
Theory:
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RECURSIVE VS. SEQUENTIAL ANALYSIS

Dynamic Programming

So why go recursive?

Allows application of series of theorems/results that guarantee a 
solution exists in the space of functions
Allows application of series of theorems/results that help find solution 
in the space of functions

Computational algorithms require it – computers can’t handle infinite-
dimensional objects!

Econ 701, 702, 630: various computational algorithms

Can’t “choose” whether to analyze problem sequentially or recursively
All but the most limited of problems require computational solution
In which case model analysis is recursive

e.g., value 
function 
iteration

Contraction Mapping Theorem, Blackwell’s Sufficient Conditions for a Contraction, Theorem of the Maximum 

Underlying 
Theory:
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RECURSIVE VS. SEQUENTIAL ANALYSIS

Dynamic Programming

So why go recursive?

Allows application of series of theorems/results that guarantee a 
solution exists in the space of functions
Allows application of series of theorems/results that help find solution 
in the space of functions

Computational algorithms require it – computers can’t handle infinite-
dimensional objects!

Econ 701, 702, 630: various computational algorithms

Can’t “choose” whether to analyze problem sequentially or recursively
All but the most limited of problems require computational solution
In which case model analysis is recursive

“Solving model sequentially”    
Doesn’t seem recursive…

…but computational implementation
requires time-invariant decision rule

1) (1 ) '( ( )t t tr uu c cβ += +

1 ) (1( ) ( )) '( )( t ttr aucu a cβ− = +

Imposing recursivity on solution

e.g., value 
function 
iteration

Contraction Mapping Theorem, Blackwell’s Sufficient Conditions for a Contraction, Theorem of the Maximum 

Underlying 
Theory:
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RECURSIVE VS. SEQUENTIAL ANALYSIS

Dynamic Programming

So why go recursive?

Allows application of series of theorems/results that guarantee a 
solution exists in the space of functions
Allows application of series of theorems/results that help find solution 
in the space of functions

Computational algorithms require it – computers can’t handle infinite-
dimensional objects!

Econ 701, 702, 630: various computational algorithms

Can’t “choose” whether to analyze problem sequentially or recursively
All but the most limited of problems require computational solution
In which case model analysis is recursive

What about stochastic dynamic programming?
Even more structure required….
The key assumption is Markov risk

e.g., value 
function 
iteration

Contraction Mapping Theorem, Blackwell’s Sufficient Conditions for a Contraction, Theorem of the Maximum 

Underlying 
Theory:

INTERTEMPORAL MODELS:
STOCHASTIC DYNAMIC PROGRAMMING

SEPTEMBER 28, 2011
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STOCHASTIC DYNAMIC PROGRAMMING

Introduction

Even more structure required on the problem to recursively solve  
dynamic stochastic optimization problems

Main (new) technical problem
Branching of event tree at each of T periods (possibly T → ∞)

Main technical solution/assumption
Assume risk follows Markov process
Which enables series of theorems/results from deterministic dynamic 
programming to work in stochastic case…
…given further technical regularity assumptions (Econ 602)

Illustrate technical problem by extending stochastic two-period 
model

September 28, 2011 16

EVENT TREE

Stochastic Two-Period Model

Period 1

a0

Economic outcomes 
during period 1:  income, 

consumption, savings
a1

Probability p:
Realization y2bar

Economic outcomes during period 2:  
stochastic income, state-contingent 

consumption, savings

a2

Beginning of 
planning horizon

End of planning 
horizon

Probability q:
Realization y2

H

Probability 1-p-q:
Realization y2

L
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EVENT TREE

Stochastic T-Period Model

Period 0 Period 1 Period 2 Period 3 Period 4

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

a0 a1

a2
i

a2
j

a3
jk

a3
jm

a3
im

In general could be any 
arbitrary unfolding of 
exogenous risk
e.g., if state i realized in period 
16, then 14 possible states in 
period 17; but if state j realized 
in period 16, then 8 possible 
states in period 17

OR
e.g., probability of state i in 
period t depends on event in 
period t-100000

Number of decision rules to 
solve explodes

Intractable!!!

“Curse of dimensionality”

Requires a lot of structure on 
exogenous risk
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RISK STRUCTURE

Macro Fundamentals

Assumptions

Set of realizations of exogenous state variable is independent of date

S2 = S3 = S4 = S5 = …. = ST-1 = ST
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RISK STRUCTURE

Macro Fundamentals

Assumptions

Set of realizations of exogenous state variable is independent of date

Probability of realization of exogenous state variable in period t depends 
only on outcomes in period t-1

Suppose Xt is a stochastic process and xt is a particular realization
Xt is a Markov process if

( )
( )

1 1 2 2 3 3 10000

1 1

10000

    

, ,....,Pr | ,

          

,

Pr

.

|

...t t t t t t t t t t

t t t t

x X x

X x X x

x X xX x X X− − − − − − − −

− −=

=

= =

== = =

CONDITIONAL probability depends on only t-1
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RISK STRUCTURE

Macro Fundamentals

Assumptions

Set of realizations of exogenous state variable is independent of date

Probability of realization of exogenous state variable in period t depends 
only on outcomes in period t-1

Suppose Xt is a stochastic process and xt is a particular realization
Xt is a Markov process if

Not as restrictive as it may seem – could have finite lags in process
E.g.

Just can’t have infinite lags (in principle) or “too many” (finite) lags (in 
computational practice)

( )
( )

1 1 2 2 3 3 10000

1 1

10000

    

, ,....,Pr | ,

          

,

Pr

.

|

...t t t t t t t t t t

t t t t

x X x

X x X x

x X xX x X X− − − − − − − −

− −=

=

= =

== = =

CONDITIONAL probability depends on only t-1
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RISK STRUCTURE

Macro Fundamentals

Assumptions

Set of realizations of exogenous state variable is independent of date

Probability of realization of exogenous state variable in period t depends 
only on outcomes in period t-1

Suppose Xt is a stochastic process and xt is a particular realization
Xt is a Markov process if

Not as restrictive as it may seem – could have finite lags in process

Exogenous state variable is Markov process + assumption/result that 
decision rules are time-invariant (for T → ∞) functions of state variables

( )
( )

1 1 2 2 3 3 10000

1 1

10000

    

, ,....,Pr | ,

          

,

Pr

.

|

...t t t t t t t t t t

t t t t

x X x

X x X x

x X xX x X X− − − − − − − −

− −=

=

= =

== = =

CONDITIONAL probability depends on only t-1

⇒ Endogenous processes are Markov Underlying theory:

Stokey, Lucas, Prescott  
(1989, Chapters 8-12)given several regularity assumptions
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STOCHASTIC – SEQUENTIAL ANALYSIS

Model Analysis

Planning horizon T → ∞

Exogenous state drawn from set S (could be continuous or discrete)
Suppose single asset with state-contingent r (will illustrate main ideas)

FOCs

c0:  

a0:  

c1:  

{ } 0

0
, 0

max ( )
t t

T
tc a

T
t

t
t

E u cβ
= =
∑

1(1 ) ,    0,1, 2,...t t t t tc tr aa y T− =+ ++ =
subject to state-contingent budget constraints in t > 0
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STOCHASTIC – SEQUENTIAL ANALYSIS

Model Analysis

Planning horizon T → ∞

Exogenous state drawn from set S (could be continuous or discrete)
Suppose single asset with state-contingent r (will illustrate main ideas)

FOCs

c0:  

a0:  

c1:  

{ } 0

0
, 0

max ( )
t t

T
tc a

T
t

t
t

E u cβ
= =
∑ subject to

0 0)'( 0u c λ− =

1 10 0)( 0'E u c Eβ β λ− =

1
0 1

0

1 (1 )E rβλ
λ

⎡ ⎤
= +⎢ ⎥

⎣ ⎦Just as in 
stochastic two-
period model

Holds for each 
state

[ ]0 0 1 1(1 ) 0rEλ β λ+ + =−

0 1 0 1'( ,  )j jEE u jc Sλ= ∀ ∈

1(1 ) ,    0,1, 2,...t t t t tc tr aa y T− =+ ++ =
state-contingent budget constraints in t > 0
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STOCHASTIC – SEQUENTIAL ANALYSIS

Model Analysis

Planning horizon T → ∞

Exogenous state drawn from set S (could be continuous or discrete)
Suppose single asset with state-contingent r (will illustrate main ideas)

FOCs

c1:  

a1:  

c2:  

{ } 0

0
, 0

max ( )
t t

T
tc a

T
t

t
t

E u cβ
= =
∑ subject to

1 10 0)( 0' EE u cβ β λ− =
Holds for each 
state

2
2 2

0 0 2)'( 0EE u cβ β λ− =
Holds for each 
state

1(1 ) ,    0,1, 2,...t t t t tc tr aa y T− =+ ++ =
state-contingent budget constraints in t > 0

[ ]2
0 1 0 2 2(1 ) 0rEEβ λ β λ+ +− =

0 1 0 1'( ,  )j jEE u jc Sλ= ∀ ∈

20 20'( ,  )j jEE u jc Sλ= ∀ ∈
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STOCHASTIC – MARKOV SOLUTION

Model Analysis

{Xt}t=0,1,2,… is Markov process (exogenous and endogenous states)

Nothing about the probability distribution of Xt+2 is known in period t 
that is not known in period t+1

Information set of period t+1 is superset of information set of period t

Allows applying a law of iterated expectations

Et Xt+2 = Et [Et+1 Xt+2]

[ ]0 2 21 0 )(1EE rλ β λ= + ( )0 1 20 21 (1 )E rEE λ β λ= +⎡ ⎤⎣ ⎦

September 28, 2011 26

STOCHASTIC – MARKOV SOLUTION

Model Analysis

{Xt}t=0,1,2,… is Markov process (exogenous and endogenous states)

Nothing about the probability distribution of Xt+2 is known in period t 
that is not known in period t+1

Information set of period t+1 is superset of information set of period t

Allows applying a law of iterated expectations

Et Xt+2 = Et [Et+1 Xt+2]

Date- and state-contingent decisions:  decisions governed by this Euler 
condition are conditional on information set of period 1 (i.e., recursivity)

[ ]1 11 2 2 )(1E E rλ β λ= + [ ]1 21 2(1 )rEλ β λ= +

[ ]0 2 21 0 )(1EE rλ β λ= + ( )0 1 20 21 (1 )E rEE λ β λ= +⎡ ⎤⎣ ⎦



14

September 28, 2011 27

STOCHASTIC – SEQUENTIAL ANALYSIS

Model Analysis

Planning horizon T → ∞

Exogenous state drawn from set S (could be continuous or discrete)
Suppose single asset with state-contingent r (will illustrate main ideas)

FOCs

c1:  

a1:  

c2:  

{ } 0

0
, 0

max ( )
t t

T
tc a

T
t

t
t

E u cβ
= =
∑ subject to

1 10 0)( 0' EE u cβ β λ− =
Holds for each 
state

2
2 2

0 0 2)'( 0EE u cβ β λ− =
Holds for each 
state

1(1 ) ,    0,1, 2,...t t t t tc tr aa y T− =+ ++ =
state-contingent budget constraints in t > 0

[ ]2
0 1 0 2 2(1 ) 0rEEβ λ β λ+ +− =

Because Markov and 
state- and date-
contingent decisions

[ ]1 21 2(1 )rEλ β λ= +

1 1 1 1'( ,  )j jEE u jc Sλ= ∀ ∈

22 22'( ,  )j jEE u jc Sλ= ∀ ∈

September 28, 2011 28

STOCHASTIC – MARKOV SOLUTION

Model Analysis

Planning horizon T → ∞

Exogenous state drawn from set S (could be continuous or discrete)
Suppose single asset with state-contingent r (will illustrate main ideas)

FOCs

ct:  

at:  

ct+1:  

One-period-ahead conditional expectation governs stochastic Euler condition

{ } 0

0
, 0

max ( )
t t

T
tc a

T
t

t
t

E u cβ
= =
∑ subject to with uncertain realizations in t > 0

0 0)( 0' t
t t

tE u c Eβ β λ− =

[ ]1
0 0 1 1)(1 0t t

t t tE E rβ λ β λ+
+ ++− + =

1 1
1 1

0 0) 0'(t t
t tE u c Eβ β λ+ +
+ +− =

Holds for each 
date and state

Holds for each 
date and state

1(1 ) ,    0,1, 2,...t t t t tc tr aa y T− =+ ++ =

Because Markov and 
state- and date-
contingent decisions

[ ]1 11 )(t t t trEλ β λ + += +

1 1)'( ,  j ju c j Sλ= ∀ ∈

2 2)'( ,  j ju c j Sλ= ∀ ∈
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STOCHASTIC – MARKOV SOLUTION

Model Solution

Denote exogenous state variables as z (e.g., zt = [yt, rt])

Solution of infinite-horizon consumer problem is a consumption decision rule 

c(a, z;.), asset decision rule a(a, z;.), and value function V(a, z;.) that 

satisfies
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STOCHASTIC – MARKOV SOLUTION

Model Solution

Denote exogenous state variables as z (e.g., zt = [yt, rt])

Solution of infinite-horizon consumer problem is a consumption decision rule 

c(a, z;.), asset decision rule a(a, z;.), and value function V(a, z;.) that 

satisfies

(Stochastic) Euler equation

which is the (expectational) TVC in the limit t → ∞:

Budget constraint

Bellman Equation

taking as given                and (Markov) transition function for z → z’( ), ,y a r

( )( , ) ( , ) ( , ) ( (( , ;.) ( ) (1 ( , ), ),) ;.)c a z c a z a a z V aV a z u y a zr E aa z zλ β≡ + + + − − + ⋅

Expectation in 
Bellman Equation

0 ( , ) (lim '( ) 0, )t

t
c a z a a zE uβ

→∞
⋅ =

[ ]'( '(( , ) ( ',) ( )) 1 '')c a z c a zu E u rβ= +

( , ) ( , )(1 ) 0c a z a ay r a z+ + − − = Transition from 
z z’
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Bellman Equation (for T → ∞)

Use to characterize optimal decisions

Current-period FOCs, evaluated using c(a,z;.), a(a,z;.)

c:

a’:

Env:

BELLMAN EQUATION

Stochastic Dynamic Programming

( ){ }
, '

( , ;.) max ( ) ( '' ( ',1 ) ;.)
c a

c c EV a z u y r a V aa zλ β≡ + + + − − + ⋅

Expectation in 
Bellman Equation

Transition from 
z z’
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Bellman Equation (for T → ∞)

Use to characterize optimal decisions

Current-period FOCs, evaluated using c(a,z;.), a(a,z;.)

c:

a’:

Env:

Bellman analysis goes through as in deterministic case
(Given further technical conditions we won’t study – Econ 602)

BELLMAN EQUATION

Stochastic Dynamic Programming

('( 0), )c a zu λ− =

1( ( , ), ;.) 0( , )E za a az zVλ β− + =

1( , ;.) (1 )V zE ra λ +=

[ ]'( ) '( )(1( , )) ( , )c a z cE zu u a rβ= +

( ){ }
, '

( , ;.) max ( ) ( '' ( ',1 ) ;.)
c a

c c EV a z u y r a V aa zλ β≡ + + + − − + ⋅

Expectation in 
Bellman Equation

Transition from 
z z’
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MARKOV RISK

Macro Fundamentals

Why does Markov assumption make everything work?

Main issue in moving from deterministic dynamic programming to 
stochastic dynamic programming:  preserving recursivity

So exogenous states must also have recursive structure

Shocks that have this recursive structure are Markov processes

Markov has property that given the current realization, future 
realizations are independent of the past

“Limited history dependence”
“Finite memory”
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MARKOV RISK

Macro Fundamentals

Why does Markov assumption make everything work?

Main issue in moving from deterministic dynamic programming to 
stochastic dynamic programming:  preserving recursivity

So exogenous states must also have recursive structure

Shocks that have this recursive structure are Markov processes

Markov has property that given the current realization, future 
realizations are independent of the past

“Limited history dependence”
“Finite memory”

In environments in which the “regularity conditions” that ensure 
standard Bellman analysis applies to stochastic problems are not
satisfied…
…often simply need to ASSUME decision rules are Markov to make 
progress


