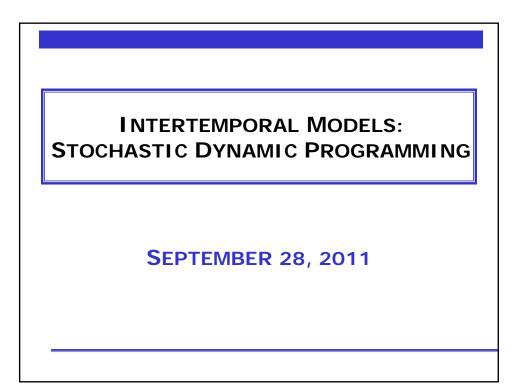
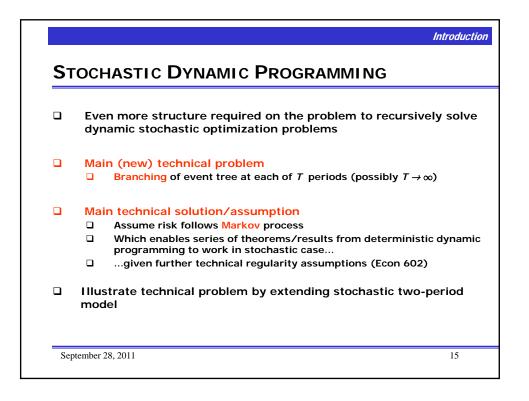
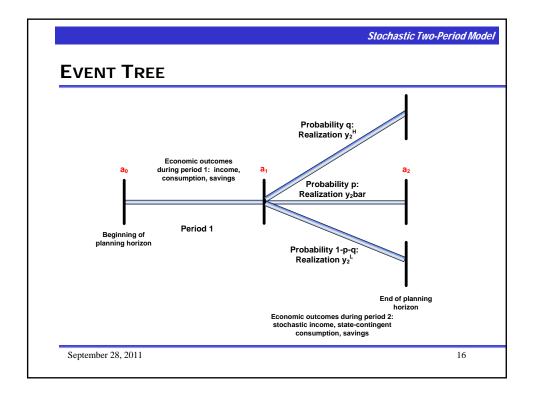


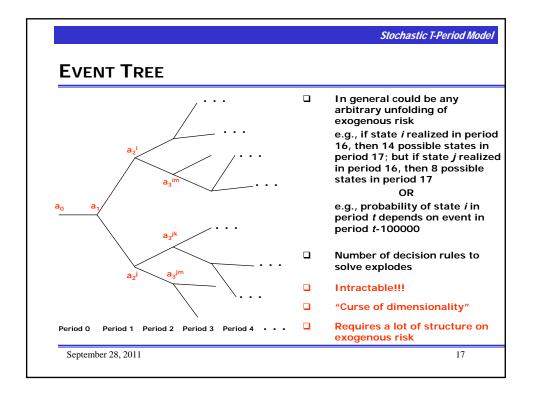
			Dynamic Programming
RE	CUR	SIVE VS. SEQUENTIAL A	NALYSIS
	So w	/hy go recursive?	
		Allows application of series of theorem solution exists in the space of functions	
nderlying	{ •	Allows application of series of theorem in the space of functions	s/results that help find solution
heory: ontraction	Mapping	g Theorem, Blackwell's Sufficient Conditions for a Contra	ction, Theorem of the Maximum
.g., value		Computational algorithms require it – o dimensional objects!	computers can't handle infinite-
eration		Econ 701, 702, 630: various computation	onal algorithms
	Can'	t "choose" whether to analyze problem	sequentially or recursively
		All but the most limited of problems red	quire computational solution
		In which case model analysis is recursi	ve
	"Sol	ving model sequentially"	
		Doesn't seem recursive →	$u(c_t) = \beta(1+r_t)u'(c_{t+1})$
		but computational implementation	Imposing recursivity on solution
		requires time-invariant decision rule	$u(c(a_{t-1})) = \beta(1+r_t)u'(c(a_t))$

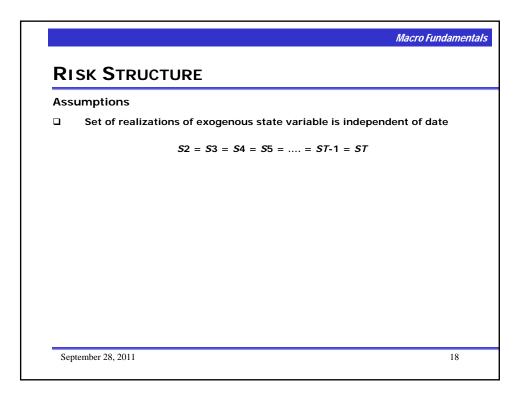
		Dynamic Programming
RE	CUF	RSIVE VS. SEQUENTIAL ANALYSIS
	So v	vhy go recursive?
		Allows application of series of theorems/results that guarantee a solution exists in the space of functions
- Underlying Theory:	{ □	Allows application of series of theorems/results that help find solution in the space of functions
	Mappin	g Theorem, Blackwell's Sufficient Conditions for a Contraction, Theorem of the Maximum
e.g., value function		Computational algorithms require it – computers can't handle infinite- dimensional objects!
iteration		Econ 701, 702, 630: various computational algorithms
	Can	't "choose" whether to analyze problem sequentially or recursively
		All but the most limited of problems require computational solution
		In which case model analysis is recursive
	Wha	at about stochastic dynamic programming?
		Even more structure required
		The key assumption is Markov risk
Sept	ember 2	28, 2011 13

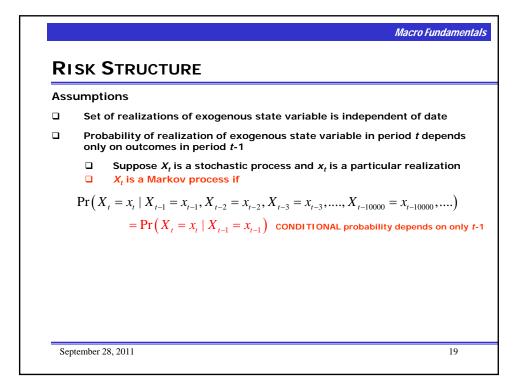




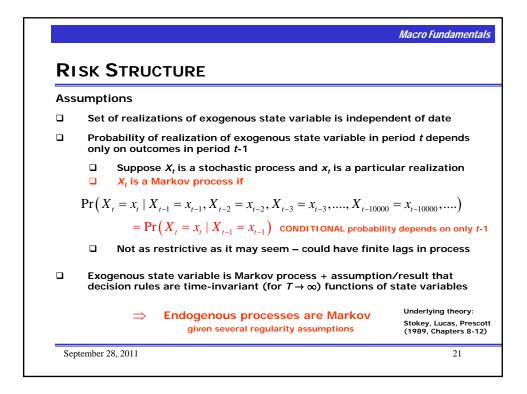


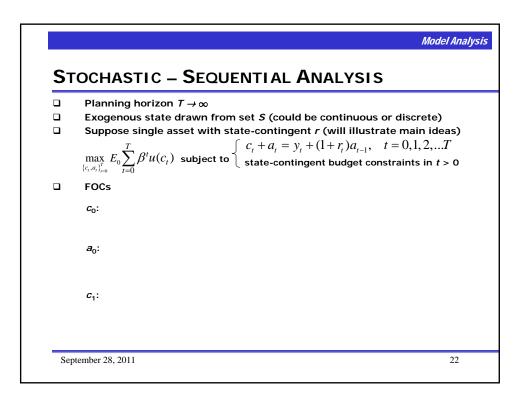


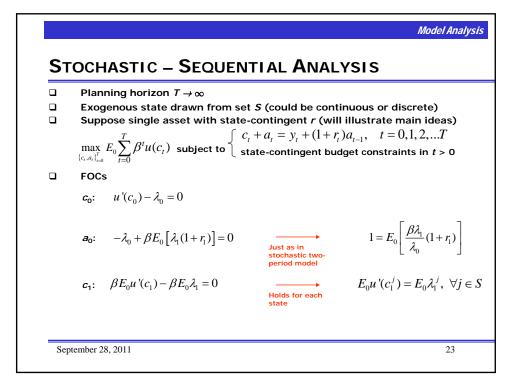




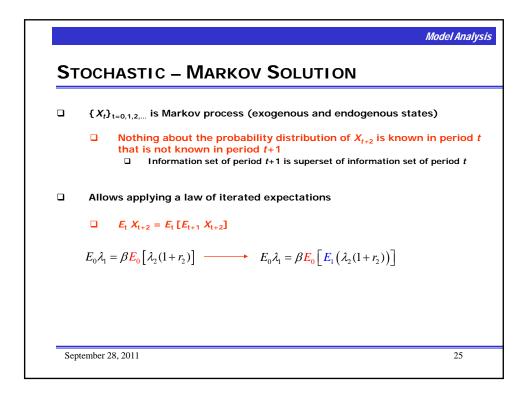
Rı	SK STRUCTURE
Ass	sumptions
	Set of realizations of exogenous state variable is independent of date
	Probability of realization of exogenous state variable in period <i>t</i> depends only on outcomes in period <i>t</i> -1
	 Suppose X_t is a stochastic process and x_t is a particular realization X_t is a Markov process if
	$\Pr\left(X_{t} = x_{t} \mid X_{t-1} = x_{t-1}, X_{t-2} = x_{t-2}, X_{t-3} = x_{t-3}, \dots, X_{t-10000} = x_{t-10000}, \dots\right)$
	$= \Prig(X_t = x_t \mid X_{t-1} = x_{t-1}ig)$ CONDITIONAL probability depends on only t -
	 Not as restrictive as it may seem – could have finite lags in process E.g.
	Just can't have infinite lags (in principle) or "too many" (finite) lags (computational practice)

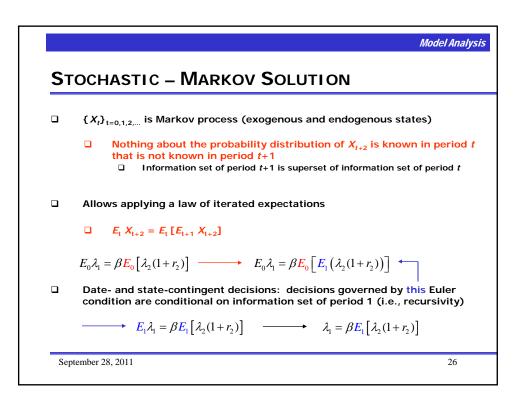




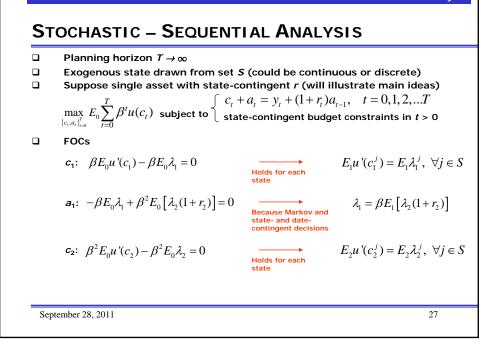


Planning horizon $T \rightarrow \infty$:	
Exogenous state drawn from set <i>S</i> (could be continuous or discrete) Suppose single asset with state-contingent <i>r</i> (will illustrate main ideas)			
$\max_{\{c_{t},a_{t}\}_{t=0}^{T}} E_{0} \sum_{t=0}^{T} \beta^{t} u(c_{t}) \text{ subject to} \begin{cases} c_{t} + c_{t} \\ \text{stat} \end{cases}$	$a_t = y_t + (1 + r_t)$ e-contingent but	$a_{t-1}, t = 0, 1, 2, \dots T$ dget constraints in $t > 0$	
FOCs			
$\boldsymbol{c}_{1}: \boldsymbol{\beta} \boldsymbol{E}_{0}\boldsymbol{u}'(\boldsymbol{c}_{1}) - \boldsymbol{\beta} \boldsymbol{E}_{0}\boldsymbol{\lambda}_{1} = \boldsymbol{0}$	Holds for each state	$E_0 u'(c_1^j) = E_0 \lambda_1^j, \ \forall j \in$	
a ₁ : $-\beta E_0 \lambda_1 + \beta^2 E_0 [\lambda_2 (1+r_2)] = 0$			

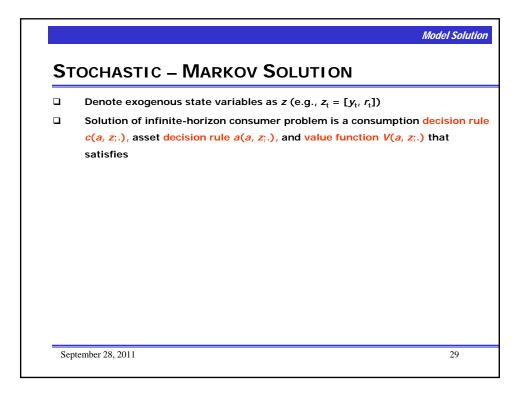




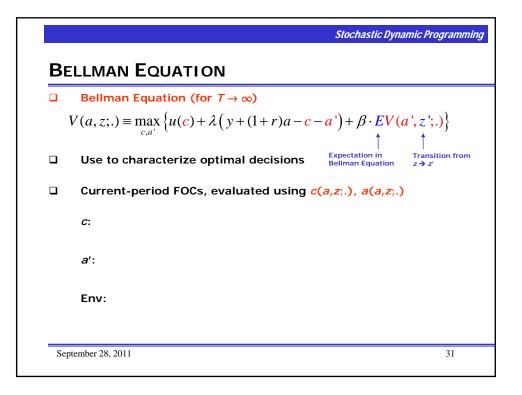
Model Analysis

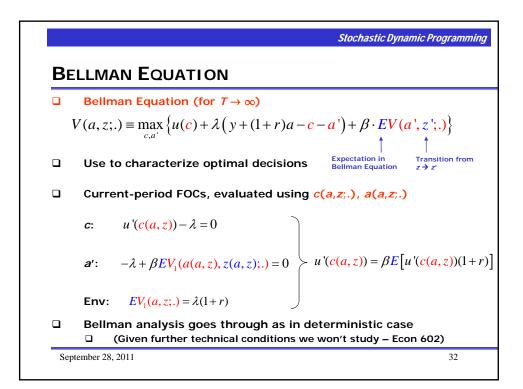


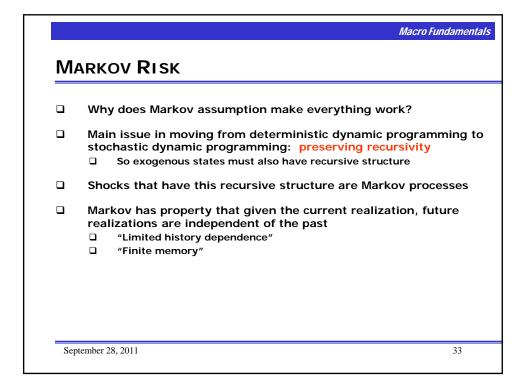
Planning horizon $T \rightarrow \infty$		
Exogenous state drawn from set <i>S</i> (could be continuous or discrete)		
Suppose single asset with state-co		
$\max_{\{c_t,a_t\}_{t=0}^{T}} E_0 \sum_{t=0}^{T} \beta^t u(c_t) \text{ subject to } \begin{cases} c_t + \\ \text{ with } \end{cases}$	$a_t - y_t + (1 + I_t)a_t$ uncertain realizati	$t_{-1}, t = 0, 1, 2, \dots t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t_{t$
FOCs		
$\boldsymbol{c}_{t}: \boldsymbol{\beta}^{t} \boldsymbol{E}_{0} \boldsymbol{u}^{\prime}(\boldsymbol{c}_{t}) - \boldsymbol{\beta}^{t} \boldsymbol{E}_{0} \boldsymbol{\lambda}_{t} = \boldsymbol{0}$	Holds for each date and state	$u'(c_1^j) = \lambda_1^j, \ \forall j \in S$
$\boldsymbol{a}_{t}: -\beta^{t} E_{0} \lambda_{t} + \beta^{t+1} E_{0} [\lambda_{t+1} (1+r_{t+1})] = 0$	Because Markov and state- and date- contingent decisions	$\lambda_t = \beta E_t \left[\lambda_{t+1} (1 + r_{t+1}) \right]$
$\boldsymbol{c_{t+1}:} \ \beta^{t+1} E_0 \boldsymbol{u}'(\boldsymbol{c}_{t+1}) - \beta^{t+1} E_0 \lambda_{t+1} = 0$	Holds for each	$u'(c_2^j) = \lambda_2^j, \ \forall j \in S$



Sı	OCHASTIC – MARKOV SOLUTION
	Denote exogenous state variables as z (e.g., $z_t = [y_t, r_t]$)
	Solution of infinite-horizon consumer problem is a consumption decision ru
	c(a, z;.), asset decision rule $a(a, z;.)$, and value function $V(a, z;.)$ that satisfies
	(Stochastic) Euler equation
	$u'(c(a, z)) = \beta E \left[u'(c(a', z'))(1+r') \right]$
	□ which is the (expectational) TVC in the limit $t \to \infty$:
	$\lim_{t \to \infty} E_0 \beta^t u'(c(a, z)) \cdot a(a, z) = 0$
	Budget constraint
	y + (1+r)a - c(a, z) - a(a, z) = 0 Expectation in Beliman Equation $z \rightarrow z'$
	Bellman Equation
	$V(a, z; .) \equiv u(c(a, z)) + \lambda \left(y + (1+r)a - c(a, z) - a(a, z) \right) + \beta \cdot EV(a(a, z), z(a, z); .)$
	taking as given (y, a, r) and (Markov) transition function for $z \rightarrow z'$







Macro Fundamenta Markov Risk		
	Why does Markov assumption make everything work?	
	Main issue in moving from deterministic dynamic programming to stochastic dynamic programming: preserving recursivity So exogenous states must also have recursive structure	
	Shocks that have this recursive structure are Markov processes	
	Markov has property that given the current realization, future realizations are independent of the past	
	In environments in which the "regularity conditions" that ensure standard Bellman analysis applies to stochastic problems are not satisfied	
	often simply need to ASSUME decision rules are Markov to make progress	