

Centerpiece of analysis
$u'(c_t) = \beta(1+r)E_t u'(c_{t+1}) \qquad \Longleftrightarrow \qquad E_t u'(c_{t+1}) = u'(c_t) [\beta(1+r)]^{-1}$
 Hall's key observation Conditional expectation of future (one-period-ahead) consumption depends only on current consumption Use as basis for testing Don't need to use income data as in tests of "Keynesian consumption function"
First study to seriously treat uncertainty in testing lifecycle model
Regression relation $u'(c_{t+1}) = u'(c_t) [\beta(1+r)]^{-1} + \varepsilon_{t+1}, E_t \varepsilon_{t+1} = 0$
All tests have the form of estimating a (one-period-ahead)

Est	imating equa	tions	
	Quadratic C_{t+}	$_{1} = \overline{c} \left[\frac{\beta(1+r) - 1}{\beta(1+r)} \right] + \frac{c_{t}}{\beta(1+r)} + \frac{c_{t}}{\beta(1+r)} + \frac{c_{t}}{\beta(1+r)} + \frac{c_{t}}{\beta(1+r)} + \frac{c_{t}}{\beta(1+r)} \right]$	\mathcal{E}_{t+1}
	CRRA $c_{t+1}^{-\sigma} = -$	$\frac{c_t^{-\sigma}}{\beta(1+r)} + \varepsilon_{t+1}$	
Sup	ppose β(1+r)	= 1 for intuitive clarity	
	Quadratic	$c_{t+1} = c_t + \mathcal{E}_{t+1}$	Consumption is a random walk!
	CRRA	$c_{t+1}^{-\sigma} = c_t^{-\sigma} + \mathcal{E}_{t+1}$	Marginal utility of consumption is a random walk
Νοι	nlinearity of r	narginal utility implies	
	Estimates/in	ference depend on assumption	on about σ
	Aggregate co	nsumption data may be mislo	eading for empirical tests,

						Hall (197		
Re	SUL	.TS						
RunEstin		using OLS on aggregate (nondurables + services) mating equations						
		Quadratic ($c_t = \overline{c} \left[\frac{\beta(1+r)}{\beta(1+r)} \right]$	$\left[\frac{-1}{r}\right] + \frac{c_{t-1}}{\beta(1+r)}$	$+ \mathcal{E}_t$			
		CRRA C	$e_t^{-\sigma} = \frac{c_{t-1}^{-\sigma}}{\beta(1+r)} + c_{$	$-\mathcal{E}_t$				
Hall,	Table	1						
Mode	əl	σ	Constant	[β(1+r)] ⁻¹	S.E.	R ²		
CRRA		0.2		0.983 (0.003)	0.00073	0.996		
CRRA		1.0		0.996 (0.001)	0.0027	0.998		
Quad	Iratic	-1.0	-0.014	1.011 (0.003)	0.0146	0.999		
Oato	hon 2 2	011				10		

Statistically insignificantly different from zero
Include lags of disposable income as regressors On the verge of significance, but essentially zero
Include lags of wealth as regressorsS&P (real) stock index as proxyIs statistically different from zero
Formally rejects pure lifecycle hypothesis
 Does this invalidate the lifecycle model? Hall (p. 985): Can modify the model to account for this relation between random-walk behavior of stock prices and random-walk behavior of consumption?

Run using OLS				
	Asset	Estimate of IES	Implied point estimate for σ	
	T-bills	0.346 (0.337)	2.9	
	Savings accounts	0.271 (0.330)	3.7	
	Stocks	0.066 (0.050)	15.1	
Only estimate using S&P returns is statistically significantly different from zero				
and indicates very low IES!				

