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Instructions:  Written solutions must be submitted no later than 9:30am on the date listed 
above.  Your solutions, which likely require some combination of mathematical 
derivations, economic reasoning, graphical analysis, and pure logic, should be thoroughly 
presented and not leave the reader (i.e., the TA and I) guessing about what you actually 
meant. 
 
You must submit your own independently-written solutions.  You are permitted (in 
fact, encouraged) to work in (small) groups (no larger than three people) to think through 
issues, ideas, and mechanics; but you must submit your own independently-written 
solutions, indicating with whom you collaborated.  Under no circumstances will 
multiple verbatim identical submissions be considered acceptable. 
 
Solutions should be clearly, logically, and thoroughly presented.  Your method of 
argument(s) and approach to problems is as important as, if not more important than, 
your “final answer.”  Throughout, your analysis should be based on the methods and 
concepts we have developed in class and/or you have studied in related courses. 
 
There are three problems. 
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Problem 1:  Intertemporal Elasticity of Substitution (9 points).  Derive the intertemporal 
elasticity of substitution (IES) for the following utility functions in the deterministic two-
period model.  Make clear the formal and intuitive definition of the IES.  If the IES measure 
does not exist, explain briefly why. 

a. 
1 1
1 2

1 2
1 1) , 0

1 1
( ,u c c c cσ σ

σ
σ σ

− −− −
= + >

− −
. 

b. 1 2
1 2

1 1, )( ac acc e eu c
a a

− −= − −  

c. 2 2
11 2 22 1( ,

2
) ,

2
, 0 0u c c cc c cα αγ γ γ α− + >−= >  

 
 
Solution:  The IES measure is computed as  
 

 2 1
2 1

1

( ) ln( / )/
ln(1 )

c ccIES c
r∂ +

=
∂ . 

 
It measures the intertemporal (i.e., across periods) substitutability of consumption growth 
in response to change in the (gross) real interest rate, coming from the Euler equation. 
 
 

a. For this functional form (CRRA in each period), the derivatives are 
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b.   For this functional form (CARA in each period), the derivatives are 

1
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equation:  
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, which looks similar to the CRRA case.  What we are looking at, 

however, is the level of consumption growth – i.e., 2
1

1

ln 1cx c
c

= −
⎛ ⎞
⎜ ⎟
⎝ ⎠

.  So if forced 

to compute the standard IES for this utility function, this is as far as we can take 
it. 
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c.   For this functional form (quadratic in each period), the derivatives are 
1 1 2 1( , )u c c cγ α= −  and 1 22 2( , )u c c cγ α= − , which can be used to construct the 

Euler equation:  1
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computed the IES = 1.  Note a couple of limits we can compute:  first, 

0
1

ln
ln(1

1
)

lim x
rγ →

∂
∂

=
+

.  Second, 
2 1 1

ln
ln(1 )

lim 1
cc

x
r→

∂
∂ +

= .  What these two limits show is 

that when the quadratic period utility function has either or both of these 
properties, the IES converges to the case of 1; when either property is not 
sufficiently satisfied, then the IES is something much more complicated. 
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Problem 2: Relative and Absolute Risk Aversion (9 points).  Derive measures of relative 
risk aversion (RRA) and absolute risk aversion (ARA) for the following utility functions in 
the two-period model (technically, stochastic, but we will soon discuss this further).  Make 
clear the formal and intuitive definition of RRA and ARA.  If the RRA and/or ARA measures 
do not exist, explain briefly why. 
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Solution:  In class, we discussed how the RRA(c) and ARA(c) measures are computed as 
one-period (i.e., static) objects, even though the utility function we are examining are 
intertemporal.  (An important caveat:  if we’re examining a utility function that is time-non-
separable (e.g., habit persistence), then technically the period-t consumption variable shows 
up in more than one time period’s utility function.  In this case, it’s less easy to say that we 
are examining the “static” case; let’s ignore such cases for now, though it is still the case that 
the utility function is more like the “static” risk cases.)  Note a further distinction between 
either relative risk aversion measure and the IES measure:  the latter is defined over 
consumption growth, while the former is defined over the consumption level in a given time 
period.  Thus, in computing the relative risk aversion measures, all that is required is the level 
of consumption (in either period one or period two). 
 
To capture this, we compute the derivatives (first and second) of the v(.) function (with u(c1, 
c2) = v(c1) + v(c2)).  The RRA measure is thus 
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As discussed in class, the RRA(c) and ARA(c) measures capture the sensitivity of an 
individual’s optimal choice (of consumption) in either relative terms (RRA) or absolute terms 
(ARA). 
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b. The derivatives are '( ) acv c e−=  and ''( ) acv c ae−= − .  The measure of RRA is thus 
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Problem 3:  Arrow-Debreu Securities vs. Non-Arrow-Debreu Securities (15 points).  
Consider two variations of the stochastic two-period consumption model.  Except for what is 
described below, all other notation and details of the model are exactly as studied in class.  In 
particular, period-2 income has conditional risk characterized by a three-point distribution 
function G(.), with realization 2

Hy  with probability 1 > q > 0, realization 2y  with probability 

1 > p > 0, and realization 2
Ly  with probability (1-p-q).   

 
One variation is the model studied in class that has a single asset a1 available for purchase at 
price R in period 1 and that pays a state-contingent return in period 2. 
 
The second variation is that, rather than the single asset a1, there are three types of assets 
available for purchase.  Each unit of asset 1

Ha  has purchase price HR  in period 1, and pays 

off one unit of goods in period 2 if state 2
Hy  is realized and zero in all other realized states; 

each unit of asset 1a  has purchase price R  in period 1, and pays off one unit of goods in 

period 2 if state 2y  is realized and zero in all other realized states; and each unit of asset 1
La  

has purchase price RL in period 1, and pays off one unit of goods in period 2 if state 2
Ly  is 

realized and zero in all other realized states. 
 
Setting up the budget constraint(s) and Lagrange analysis appropriately, show that the two 
different asset structures lead to two different allocations. 
 
 
Solution:  In the first case (i.e., the non-AD asset), the Lagrangian for the optimization 
problem is as studied in class, namely 
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which is the sequential form of the Lagrangian (try it with the lifetime form, too).  Note 
that the (1 + r1) terms don’t matter in the right-hand-sides of the period-2 budget 
constraints – that is just re-ordering the terms so they are defined in terms of “one-
plus…” something (i.e., the R price of the single asset is just a definition).   
 
The first-order conditions with respect to c1, the triple of c2’s, and a1 are thus 
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The middle three expressions all say that marginal utility in a particular state in period 2 
exactly equals the marginal value of wealth/income.  So we can simply focus on the fifth 
equation.  The fifth equation says, rearranged a bit, 
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or in terms of expectations,  
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Regardless how it is looked at, this is one Euler equation across the two periods.   
 
Turning now to the case of AD assets:  the period-1 budget constraint is 

11 11 1 0
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22 2 1
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asset holdings for each branch of the event tree, 2 2 2 0H La a a= = = ). 
 
The Lagrangian for this optimization problem is  
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with Lagrange multipliers for the (three) different possible cases of realized-period-two 
income, and, importantly, (three) different prices for each of the (three) Arrow-Debreu 
securities.  This makes the optimization problem  different. 
 
The first-order conditions with respect to c1, the triple of c2’s, and now the triple of a1’s 
are 
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The last three equations here define three clearly different Euler equations:  2

1

H
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λ
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In this latter, AD, scenario, each of the three possible realizations of period-2 income can be 
insured against, so that the individual ends up equalizing his marginal utility of period-2 
consumption no matter what (presuming that the price of the assets are actuarially fair, which 
is being assumed here). 
 
Looking instead at the one-asset model, this equalization of marginal utilities cannot in 
general occur.  Equalization of marginal utilities is a basic idea in macro-finance, and AD 
securities are needed to ensure this result. (And then one can think beyond this to 
understand how the real world’s financial system works – i.e., in many senses, AD assets 
are the financial field’s equivalent over time of perfect competition in economic markets 
in a static sense.) 
 


