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Instructions:  Written solutions must be submitted no later than 9:30am on the date listed 
above.  Your solutions, which likely require some combination of mathematical 
derivations, economic reasoning, graphical analysis, and pure logic, should be thoroughly 
presented and not leave the reader (i.e., the TA and I) guessing about what you actually 
meant. 
 
You must submit your own independently-written solutions.  You are permitted (in 
fact, encouraged) to work in (small) groups (no larger than three people) to think through 
issues, ideas, and mechanics; but you must submit your own independently-written 
solutions, indicating with whom you collaborated.  Under no circumstances will 
multiple verbatim identical submissions be considered acceptable. 
 
Solutions should be clearly, logically, and thoroughly presented.  Your method of 
argument(s) and approach to problems is as important as, if not more important than, 
your “final answer.”  Throughout, your analysis should be based on the methods and 
concepts we have developed in class and/or you have studied in related courses. 
 
There are two problems. 
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Problem 1:  Infinite-Horizon Consumption Model (16 points).  Consider the infinite-
horizon consumption model starting from the beginning of period zero.  Suppose the 
consumer has lifetime utility function given by 
 

 0
0
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with budget constraints given by 0 0
1

0 0 1
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i
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=

−+ = +∑  for each t, and state-contingent 

(i.e., Arrow-Debreu) assets available for purchase in each period, { }1, 2,..., Ji∈ .  To 
make the problem somewhat tractable, suppose that the set J of realizations is large 
enough that it encompasses all of the risk that could unfold over time.  The function u(.) 
is strictly increasing and strictly concave.  (And we are of course considering rational 
expectations in everything below.) 
 
 
a. (2 points)  Construct a recursive problem (i.e., dynamic programming problem) based 

on the above.  State explicitly what other (if any other) assumptions are required in 
order to make the problem have a unique solution. 
 

Solution:  To construct a recursive problem, we require, most importantly, the exogenous 
processes to be driven by Markov shocks.  This is already implied by the structure of the 
budget constraint written above (which holds for each t):  in each period, the state is 
realized, and there is only one asset (called a-1 above) that pays off.  All of the other 
assets that were pre-accumulated entering that period are worth zero. 
 
Then, starting in that period, there are itR  prices for (a complete set of) new assets (the 
specific label is 0iR  above, but this gets updated in every period).  We could proceed here 
with this notation, but to be more careful (and to make things more comparable with the 
analysis in the sequential setup below), write this asset price as Rit(st+1|st).  (In which, 
note, both sets of notation i and st+1 are included, for clarity but also redundancy). 
 
The value function is then given by 
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If we want to further emphasize the probabilities of state st+1 given state st has occurred, 
suppose that its probability is p(st+1|st); with this notation, the value function can be 
written as 
 



 3
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In writing this recursive representation, some arbitrary date t is chosen; the date t = 0 can 
specifically be chosen, as well.  
 

 
b. (2 points)  Based on the recursive problem above, construct the Euler equation(s) for 

period t.  State any further (if any other) assumptions required to make the Euler 
equation(s) well-behaved. 

 
Solution:  (As above, note that both sets of notation i and st+1 are included, for clarity but 
also redundancy.)  The first-order condition of the recursive problem with respect to 
(each of the vector of) ait is  
 

 *
1 1 1 1( | ) ( ( ;.) |) ( ) 0itt it t t t t tiR s s V a s p s sλ β+ + +− + =  

 
for all {1,2,..., }i J∈ .  The envelope theorem (also known as the Benveniste-
Scheinkman theorem in dynamic programming) then tells us that 11

* )( ( ;.) )(it t it tV a s sλ− =  
(note here that we are explicitly including the states of period t; simply because updating 
this one period gives 1 1

*
1 1( ( ;.) )()t ii t ttV a s sλ+ + += .  Putting these conditions together gives 

1 1 1 1)( | ( ( | 0) )t it t t it t i t tR s s s s spλ βλ+ + + +− + = , {1,2,..., }i J∈ , or, equivalently,    
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for all {1,2,..., }i J∈ .  These conditions are the Euler equations, which are expressions 
evaluated at time t.   
 
Instead, in terms of marginal utility functions for consumption, 

1 1
1 1

'( ))(( | ) ( | )
'( )
it t

it t t it t t
t

sR s s p s u c
u

s
c

β + +
+ +=   for all {1,2,..., }i J∈ .  (Either form of the Euler 

equation was fine.)  Besides the assumption of Markov risk (as was already stated in part 
a), there are no other assumptions required here. 

 
 

c. (2 points)  State the complete/proper definition of the equilibrium solution of the 
recursive problem above.  Be sure to include every detail. 

 
Solution:  Equilibrium in this recursive version of the problem is a pair of time-invariant 
functions { }), ( )( t tac S S  that jointly satisfy the set of Euler equations above, and the 
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sequence of budget constraints 
1

1t it it t t
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+ = +∑ .  The set [ ]1,t t ty a −=S  (assuming 

that it is the set of assets coming into a period and the realization of income that are 
stochastic).  (Also note that we could have specified the value function V(.) as part of the 
set of objects being determined, with the Bellman equation as the third equations.) 
 
 
d. (2 points)  Suppose instead of the recursive problem above, you want to study the 

sequential problem (i.e., sequential Lagrangian).  Construct a sequential problem 
based on the above.  In particular, do not make any other assumptions required in 
order to make the problem have a unique solution. 

 
Solution:  The sequential Lagrangian starting from period zero (and in this case, there is 
no other choice except to start from period zero, simply because the problem is not 
recursive) is 
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This setup is based on the Arrow-Debreu asset structure described in Ljungqvist and 
Sargent (Chapter 8.5) (you could have chosen the alternative structure of Arrow assets 
presented in Chapter 8.8).  The term )( t

tp s  (which, note, is distinct from the term p in 
the recursive structure above), is the price of period- t consumption contingent on history 
st at t, in terms of an abstract unit of account. 
 

To see the terms slightly differently, the utility function is 0
0
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single budget constraint is 0
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Note how much less structure the non-Markov problem contains.  Nonetheless, in the 
next part, we will construct state prices (i.e., Euler equations). 
 
 
e. (2 points)  Based on the sequential problem above, construct the Euler equation(s) for 

period t. 
 
Solution:  As described in Ljungqvist and Sargent (Chapter 8.5 and 8.7), one can 
construct one-period-ahead prices based on the chosen optimal decisions.  Using their 
notation, the one-period-ahead Euler equation is 
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which requires an assumption about initial-period wealth to make it compatible with the 
Arrow-Debreu allocation.  Given the differences in state-contingent functions in the 
recursive formulation above, and the truly sequential analysis here, this function looks 
very similar to the one that appears in part b.  
 
 
f. (2 points)  State the complete/proper definition of the equilibrium solution of the 

sequential problem above.  Be sure to include every detail. 
 
Solution:  With abuse of notation, in principle, equilibrium in this sequential version of 
the problem is an infinite-dimensional sequence  { }1

0
( , () )t t

tt t
c s a s

∞+

=
 that jointly satisfy the 

sets of Euler equations above, and the infinite sequences of budget constraints.  Note that 
each of these objects are vectors of consumption and (if we are allowing it) asset holdings 
choices. 
 
 
g. (2 points)  Construct the value function, carefully labeling variables with their 

optimum values, of either the recursive problem, the sequential problem, or both.   
 
Solution:  For the recursive problem, the value function is as written in part a above, so 
let’s just use that one. 
 
h. (2 points)  Suppose we are looking to differentiate the value function with respect to 

parametric assets.  Which variable(s), if any variable(s), can we differentiate the value 
function with respect to?  If it exists, differentiate the value function with respect to 
those variable(s).  Provide brief interpretation 

 
Solution:  With the structure in place immediately above, it is clear that the envelope 
condition tells us that 1 1( ,·)t tV a λ− = .  The immediate interpretation is (the usual 
interpretation) that when we are starting from an optimal solution, then changing one of 
the parameters of the problem only leads to a “first-order” change in the overall utility 
(i.e., lifetime utility). 
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Problem 2:  Finite-Horizon Dynamic Programming (17 points).  Consider a three-
period (period 0, period 1, period 2) deterministic consumer problem.  The real 
endowment incomes in periods 0, 1, and 2, are constant at y, and the real interest rate on 
assets brought into each of the three periods is also constant at r. All of this is known 
from the beginning of period zero (because the problem is deterministic). 
 
Denote the value functions for periods 0, 1, and 2, respectively, by 0

1( )V a− , 1
0( )V a , and 

2
1( )V a ; the state variables that are arguments to the value functions are already provided 

to you, and there are no other arguments.  The value functions for “period 3” and beyond 
are all zero. 
 
The lifetime utility function of the consumer, starting from the beginning of period zero, 
is 

 
1 1 1
0 1 2

21 ( 1) ( 1)
1 1 1

c c cσ σ σβ β
σ σ σ

− − −− − −
+ +

− − −
, 

 
in which the scalar (0,1)β ∈  is a standard one-period-ahead subjective discount factor, 

0σ >  is a parameter of the utility function, and, as always, ct, denotes consumption in 
periods t = 0, 1, 2.  The sequence of budget constraints faced by the consumer are also as 
usual, 
 

 
0 0 1

1 1 0

2 2 1

(1 )
(1 )

)(1

a y r a
a y

c
c r a

a y ac r

−+ = + +
+ = +

+ +
+

+ =
 

 
in which ta  denotes asset holdings at the end of period t.  The terminal condition of this 
problem is a2 = 0, and the parameters of the entire lifetime utility maximization problem 
are 1,( , )y r a− . 
 
You have the following three (related) tasks: 

 
1. Conduct a value function iteration to develop expressions for the value functions 

0
1( )V a− , 1

0( )V a , and 2
1( )V a  (where the superscript denotes the period from which 

V(.) begins). 
 

2. Develop closed-form expressions for the optimal decision rules (aka policy 
functions) for consumption in each of the three periods and (end-of-period) asset 
holdings for period zero and period one.  These policy functions should be functions 
of only the state variables for any given period.  That is, develop closed-form 
expressions for the optimal choices * 0

0 1( )c c a−= , * 0
0 1( )a a a−= , * 1

1 0( )c c a= , 
* 1
1 0( )a a a= , and * 2

2 1( )c c a=  that depend on only the given state variables and fixed 
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parameters of the problem.  (You do not have to obtain closed-form solutions for 
these optimal choices in terms of only parameters of the problem.)   
 

3. Answer the following:  are there any restriction(s) on parameters that make the value 
functions 0

1( )V a− = 1
0( )V a = 2

1( )V a ?  If so, develop the restriction(s) and describe the 
economic intuition; if not, describe intuitively why there is no such restriction(s).  
(This question is likely best answered after completing the above.) 

 
Note that while there are several ways one can solve the underlying optimization 
problem, you are being asked to do so via a value function iteration (i.e., you are asked to 
demonstrate conducting a value function iteration). 
 
 
Solution:  In a few steps, we’ll consider just the case of σ = 1 (the case of log utility).  
Not because the 1σ ≠  case is irrelevant, but simply because the σ = 1 case can be solved 
in closed form.  So your solutions should be checked with this limiting case. 
 
The problem requires backward iteration.  The (trivial) Bellman equation starting from 
period 2 is 
 

 [ ]{ }
2

2
1 2 2 1 2( ) max ( ) (1 )

c
a u y a ccV rλ + + −= + , 

 
in which the terminal condition 2 0a =  is imposed and there is no continuation value 
function (because there is no period three).  Using the functional form for period utility, 
the straightforward optimization leads to * 2

2 1 1(1 ) ( )c y r a c a= + + ≡ , which is the 
consumption policy function for period 2.   
 
Inserting this into the period-2 Bellman equation and recognizing that the period-2 
budget constraint holds with equality at the optimal choice, the period-2 value function is  
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which has associated envelope condition 

 
[ ]

2 2 2
1 1 1 2

11
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Iterating backwards, the Bellman equation starting from period 1 is 
 

 [ ]{ }
1 1

1 2
0 1 1 0 1 1 1,

( ) max ( ) (( ) )1
c a

V ya u c V ar a c aλ β= + + + − − + . 
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The first-order conditions with respect to 1c  and 1a  give 1
1

1
cσ

λ=  and 2
1 1( )aV aλ β= .   

 
From here on, we limit attention to the case of σ = 1 because that allows closed-form 
solutions; in general, though, one could continue with the 1σ ≠  case. 
 
 
Substituting the period-2 envelope condition (now with the limiting case of σ = 1 
considered), we have the period-1 Euler equation 
 

 * *
1 1

1 (1 )
(1 )

r
c y r a

β +
=

+ +
, 

 
with asterisks now written to emphasize we are looking at the optimal solution.  The 
other condition that relates *

1c  and *
1a  is the period-1 budget constraint, 

* *
1 0 1(1 )c y r a a= + + − .  Solving this simultaneously with the period-1 Euler equation gives  

 * 10
1 0
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(2 )
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r ar yc
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β β β
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r r a a
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β β
+ − +

≡
+
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= + +⎢ ⎥+ +⎣ ⎦

, 

which are the policy functions for consumption and asset holdings in period 1. 
 
 
Inserting these period-1 policy functions into the period-1 Bellman equation, the period-1 
value function is 
 

( )
11

01 1 1 1 2 1
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)
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which has associated envelope condition  

 
1 1 1

0 0 0 1
0
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(in which we will, again, consider the limit case of σ = 1). Iterating backwards again, the 
Bellman equation starting from period 0 is 
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0 0,

0 1
1 0 0 1 0 0 0( ) max ( ) ( )(1 )

c a
V y r a c aa u c V aλ β− −+ + − − += + . 
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The first-order conditions with respect to 0c  and 0a  give 
0

0
1
cσ

λ=  and 1
0 0( )aV aλ β= .  

Substituting the period-1 envelope condition (evaluated at σ = 1), we have the period-0 
Euler equation 
 

 
0
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1 (1 )
2
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with asterisks now written to emphasize we are looking at the optimal solution.  The 
other condition that relates *

0c   and *
0a  is the period-0 budget constraint, 

0 1 0
* *(1 )c y r a a−+ −= + .  Solving this simultaneously with the period-0 Euler equation  

gives, after some algebra, 
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and  
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which are the policy functions for consumption and asset holdings in period 0.  (You may 
not have grouped terms in exactly this way, which is fine.) 
 
 
Inserting these period-0 policy functions into the period-0 Bellman equation, the period-0 
value function is 
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which we can restate as (because the flow budget constraint holds with equality in each 
period) 
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Indeed, in the final expressions for each of the value functions, we can drop the term 
associated with the flow budget constraint because the budget constraint holds with 
equality. 
 
 
Clearly, there is no way for the value functions (and hence the policy functions) to be 
time-invariant (which is the next question you are asked) because this is a finite-horizon 
programming problem.  However, that does not mean that the consumption choices 
cannot be time-invariant.  Indeed, if we had (1 ) 1rβ + = , then intertemporal consumption 
smoothing is achieved here, in the sense that 
 

 0 1 0 2 1 0
1 1 1( ) ( ( )) ( ( ( )))a c a a c ac a a− − −= = . 

 
In a deterministic finite-horizon problem (and given (1 ) 1rβ + = ), what supports 
intertemporal consumption smoothing is a equi-proportional drawdown of assets over 
time (or, if 1 0a− < , a equi-proportional payback of debt over time), so that at the end of 
the planning horizon, the terminal condition 2 0a =  is achieved. 
 
Without (1 ) 1rβ + = , the intertemporal consumption path is either upward sloping or 
downward sloping. 
 


