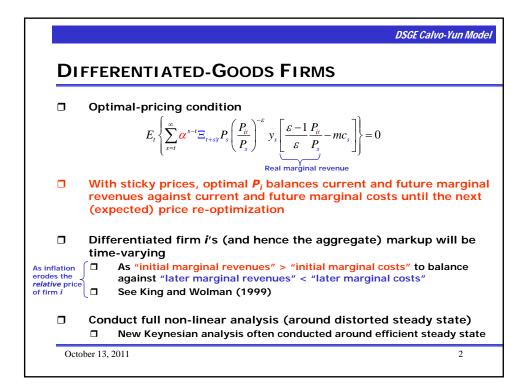
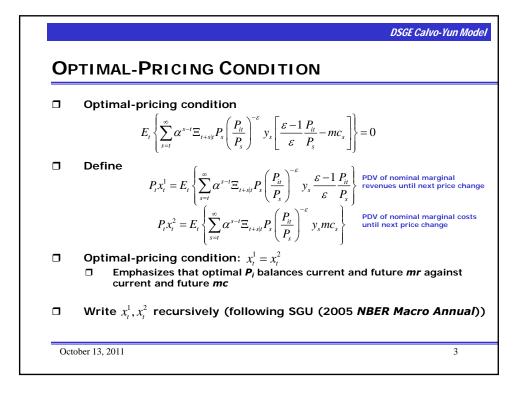
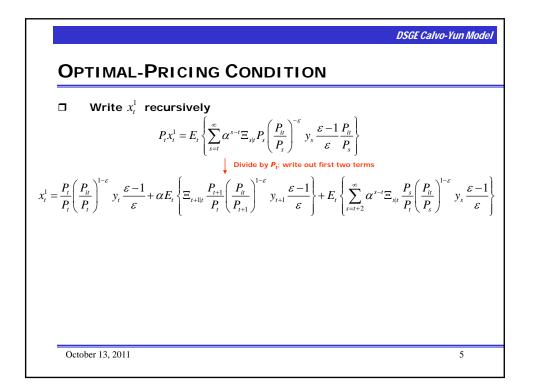
NOMINAL RIGIDITIES IN A DSGE MODEL: BASIC CALVO-YUN MODEL

OCTOBER 13, 2011

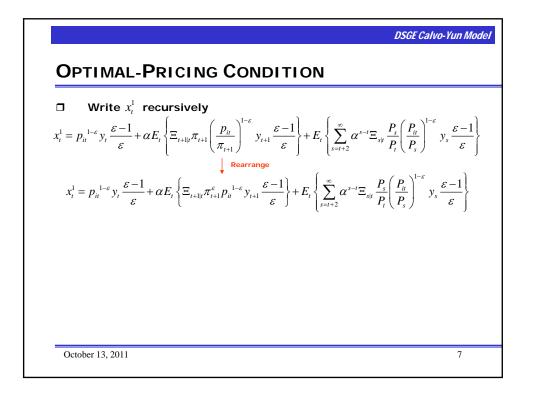


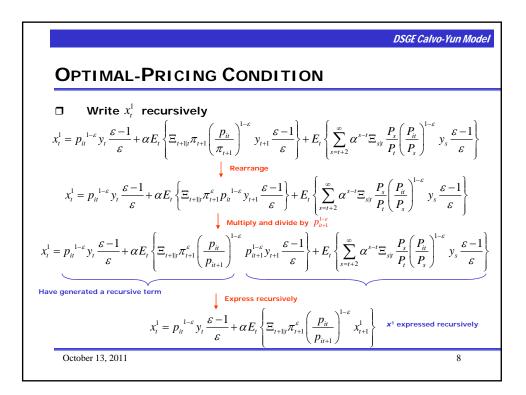


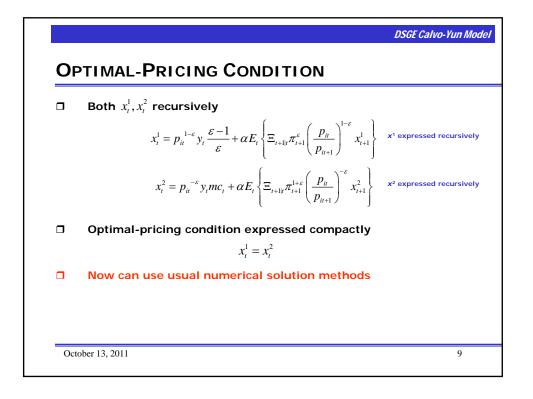
Some notation and definitions	
P_{it}	Nominal price of good <i>i</i> in period
$p_{it} \equiv \frac{P_{it}}{P_t}$	Relative price of good <i>i</i> in period
$P_{ii+1} = P_{ii}$	Evolution of nominal price if no price change
$p_{it+1} = \frac{P_{it+1}}{P_{t+1}} = \frac{P_{it}}{P_{t+1}}$ $= \frac{P_{it}}{P_{t}} \frac{P_{t}}{P_{t+1}}$	As long as no nominal price change, a firm's relative price erodes the rate of inflation $(n_{t+1} = P_{t+1}/P_t)$

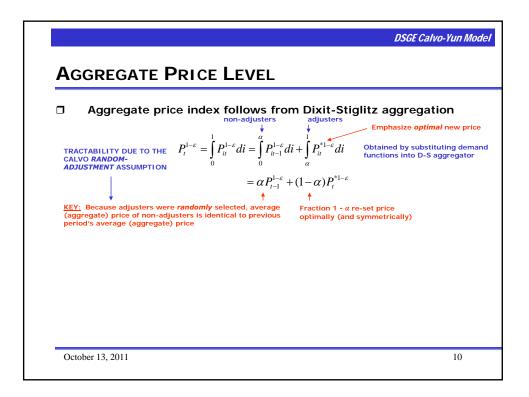


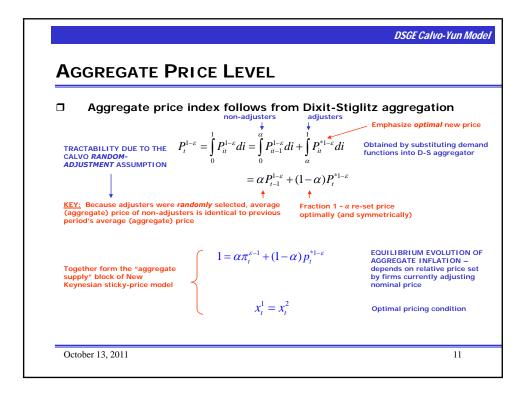
DSGE Calvo-Yun Model
OPTIMAL-PRICING CONDITION
\square Write x_t^1 recursively
$P_{t}x_{t}^{1} = E_{t}\left\{\sum_{s=t}^{\infty} \alpha^{s-t} \Xi_{s t} P_{s}\left(\frac{P_{it}}{P_{s}}\right)^{-\varepsilon} y_{s} \frac{\varepsilon - 1}{\varepsilon} \frac{P_{it}}{P_{s}}\right\}$
Divide by P_{ii} write out first two terms
$x_{t}^{1} = \frac{P_{t}}{P_{t}} \left(\frac{P_{it}}{P_{t}}\right)^{1-\varepsilon} y_{t} \frac{\varepsilon - 1}{\varepsilon} + \alpha E_{t} \left\{ \Xi_{t+1 t} \frac{P_{t+1}}{P_{t}} \left(\frac{P_{it}}{P_{t+1}}\right)^{1-\varepsilon} y_{t+1} \frac{\varepsilon - 1}{\varepsilon} \right\} + E_{t} \left\{ \sum_{s=t+2}^{\infty} \alpha^{s-t} \Xi_{s t} \frac{P_{s}}{P_{t}} \left(\frac{P_{it}}{P_{s}}\right)^{1-\varepsilon} y_{s} \frac{\varepsilon - 1}{\varepsilon} \right\}$
$P_{l+1} = P_{lt}$ while no price change opportunity
$x_{t}^{1} = \left(\frac{P_{it}}{P_{t}}\right)^{1-\varepsilon} y_{t} \frac{\varepsilon - 1}{\varepsilon} + \alpha E_{t} \left\{ \Xi_{t+1 t} \frac{P_{t+1}}{P_{t}} \left(\frac{P_{it+1}}{P_{t+1}}\right)^{1-\varepsilon} y_{t+1} \frac{\varepsilon - 1}{\varepsilon} \right\} + E_{t} \left\{ \sum_{s=t+2}^{\infty} \alpha^{s-t} \Xi_{s t} \frac{P_{s}}{P_{t}} \left(\frac{P_{it}}{P_{s}}\right)^{1-\varepsilon} y_{s} \frac{\varepsilon - 1}{\varepsilon} \right\}$
Use definitions $\left(\begin{array}{c} r \\ r \\ r \end{array} \right) = \left(\begin{array}{c} r \\ r $
$x_{t}^{1} = p_{it}^{1-\varepsilon} y_{t} \frac{\varepsilon - 1}{\varepsilon} + \alpha E_{t} \left\{ \Xi_{t+1 t} \pi_{t+1} p_{it+1}^{1-\varepsilon} y_{t+1} \frac{\varepsilon - 1}{\varepsilon} \right\} + E_{t} \left\{ \sum_{s=t+2}^{\infty} \alpha^{s-t} \Xi_{s t} \frac{P_{s}}{P_{t}} \left(\frac{P_{it}}{P_{s}} \right)^{1-\varepsilon} y_{s} \frac{\varepsilon - 1}{\varepsilon} \right\}$ $\qquad \qquad $
October 13, 2011 6



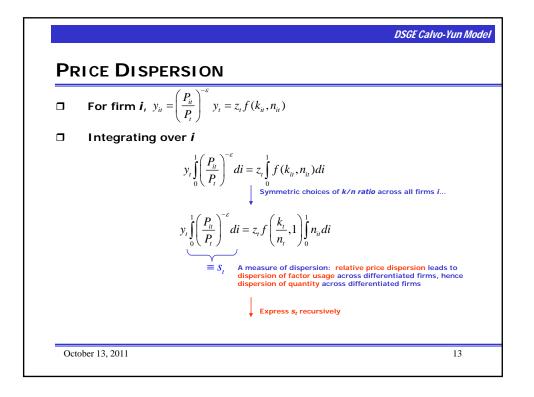


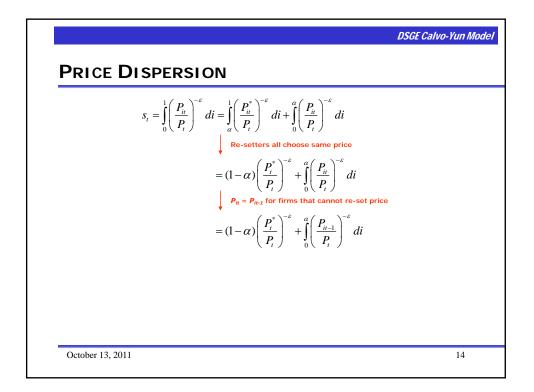


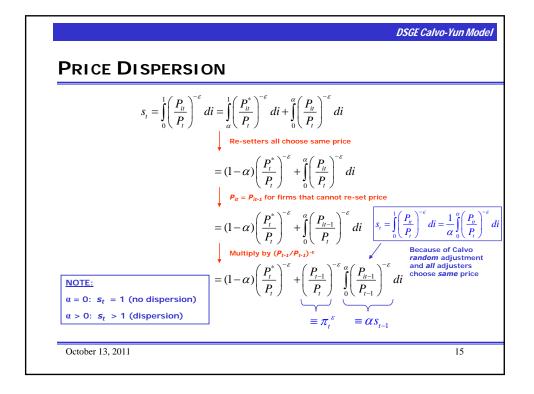




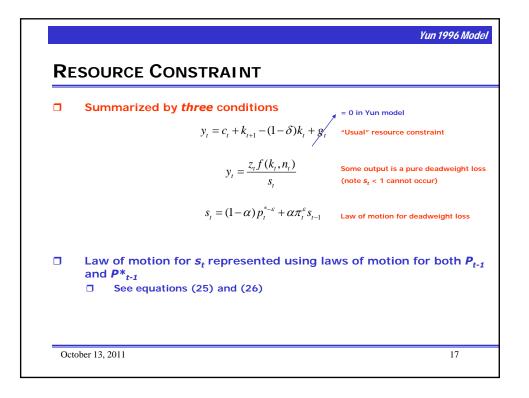
		DISPERSION		
	Calvo model implies dispersion of relative prices			
		As does Taylor model (see Chari, Kehoe, McGrattan (2000 <i>Econometrica</i> for an example))		
		but not Rotemberg model (quadratic cost of nominal price adjustment)		
	Dispersion often ignored until recently			
		due to linearization around a zero-inflation steady state (typical simple New Keynesian model soon)		
		With better numerical tools, easier to take account of dispersion		
	Price dispersion the basic source of welfare losses of non-zero inflation			
		Because it implies quantity dispersion across intermediate producers		
		which is inefficient because Dixit-Stiglitz aggregator is symmetric and concave in every good <i>i</i>		
		The basic driving force of optimal policy in any NK model		







Summarized b	y three conditions	
And using factor market	$y_t = c_t + k_{t+1} - (1 - \delta)k_t + g_t$	"Usual" resource constraint
clearing conditions here $k_i = \int_0^1 k_{ii} di, n_i = \int_0^1 n_{ii} di$	$y_t = \underbrace{z_t f(k_t, n_t)}_{S_t}$	Some output is a pure deadweight lo: (note $s_t < 1$ cannot occur)
	$s_t = (1 - \alpha) p_t^{*-\varepsilon} + \alpha \pi_t^{\varepsilon} s_{t-1}$	Law of motion for deadweight loss



0-	Yun 1996 Mod
	THER MODEL DETAILS
	Cash/credit to motivate money demand
have b	□ i.e., Lucas and Stokey (1983), Chari, Christiano, and Kehoe (1991)
	(Habit persistence (i.e., time-non-separability) in leisure)
	As in Kydland and Prescott (1982); unimportant for main results
	Exogenous AR(1) money growth process
	□ Also "endogenous" money supply process, but not as interesting
	Exogenous AR(1) TFP process
	Indexation of prices to average (i.e., steady-state) inflation
	For firms not re-setting price, $P_{ii} = \pi P_{ii-1}$ (will see again in Christiano, Eichenbaum, and Evans (2005 JPE))
	Approximated and simulated using linear methods
	Using King, Plosser, Rebelo (1988) linear approximation method
Oct	ober 13, 2011 18

