LABOR SEARCH MODELS: GENERAL-EQUILIBRIUM DYNAMICS

NOVEMBER 17, 2011

DSGE Labor Search Model FULL BUSINESS CYCLE MODEL: SOME ISSUES Embed labor-search framework in standard RBC model Assume perfect capital markets (Optimal) capital purchased by firm instantaneously on spot market after knowing how many workers it has found Standard condition emerges: $r_t = MPK_t$ Full consumption insurance Krusell et al (2009) and Nakajima (2009) try Achieved by assumption of "large household" \square All family members (employed and unemployed) enjoy same c_t relaxing this But what about utility from leisure/work? Ex-post, the unemployed are better off! – just as in Rogerson (1988) and Hansen (1985) Doesn't this miss the main "cost" of unemployment and recessions?... Andolfatto (1996) shows formal insurance market - equivalent to Hansen/Rogerson "lotteries" November 17, 2011

		to i	

MODEL DETAILS

- ☐ Household-level (not individual-level) utility from leisure
- □ Solves Social Planner problem
 - ☐ Can be decentralized with the Hosios Condition (worker Nash bargaining power = elasticity of workers in matching function) in place
 - ☐ Hosios Condition critical for efficiency in search markets
- □ Household search "effort" e
 - ☐ Higher e → higher probability a searching individual locates a match
 - But fixed search effort, so doesn't do much just calibration
 - ☐ Can endogenize e.g., Krause and Lubik (2007)
- ☐ Endogenous intensive margin (average hours per employee)
 - Determined (implicitly) through Nash bargaining
 - □ Nash bargaining simultaneously over w_t and h_t yields privately-efficient outcome for h_t (see Pissarides p. 175-178)
 - \square Other mechanisms: allow household or firm to unilaterally choose h_t

November 17, 2011

3

Andolfatto Model

MODEL RESULTS

☐ TFP shocks — standard business cycle statistics Extensive margin fluctuates more than intensive margin

TABLE 1—CYCLICAL PROPERTIES: U.S. ECONOMY AND MODEL ECONOMIES

	U.S. economy $\sigma(y) = 1.58$			RBC economy $\sigma(y) = 1.22$			Search economy $\sigma(y) = 1.45$		
Variable (x)	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)
Consumption	0.56	0.74	0	0.34	0.90	0	0.32	0.91	0
Investment	3.14	0.90	0	3.05	0.99	0	2.98 🇸	0.99	0
Total hours	0.93	0.78	+1	0.36	0.98	0	0.59	0.96	0
Employment	0.67	0.73	+1	0.00	0.00	0	(0.51)	0.82	+1
Hours/worker	0.34	0.66	0	0.36	0.98	0	0.22	0.66	0
Wage bill	0.97	0.76	+1	1.00	1.00	0	0.94	1.00	0
Labor's share	0.68	-0.38	-3	0.00	0.00	0	0.10	-0.62	-1
Productivity	0.64	0.43	-2	0.64	0.99	0	0.46	0.94	0
Real wage	0.44	0.04	-4	0.64	0.99	0	0.39	0.95	0

Notes: $\sigma(y)$ is the percentage standard deviation in real per-capita output. Column (1) is $\sigma(x)/\sigma(y)$. Column (2) is the correlation between x and y. Column (3) is the phase shift in x relative to y: -j or +j corresponds to a lead or lag of j quarters

Productivity fluctuates more than real wage

Consumption and investment dynamics little altered compared to basic RBC model

November 17, 2011

Andolfatto Model

MODEL RESULTS

☐ TFP shocks - cyclical labor-market statistics Empirical Beveridge Curve

Table 3—Cross Correlations of Unemployment with Unemployment and Vacancies $x(t-4) \quad x(t-3) \quad x(t-2) \quad x(t-1) \quad x(t) \quad x(t+1) \quad x(t+2) \quad x(t+3)$

Variable (x)	x(t - 4)	x(t - 3)	x(t - 2)	x(t - 1)	x(t)	x(t + 1)	x(t + 2)	x(t + 3)	x(t + 4)
U.S. economy:									
Unemployment	0.23	0.46	0.69	0.89	1.00	0.89	0.69	0.46	0.23
Vacancies	-0.39	-0.62	-0.82	-0.92	-0.89	-0.72	-0.47	-0.21	0.02
Search economy:									
Unemployment	0.20	0.41	0.65	0.87	1.00	0.87	0.65	0.41	0.20
Vacancies	-0.51	-0.65	-0.73	-0.65	(-0.19)	0.05	0.17	0.24	0.27

Qualitatively reproduced by

- □ Vacancies not nearly as volatile as in data (p. 124)
 - General equilibrium effects do little to address the *partial-equilibrium* dynamic shortcoming of labor search model i.e., Shimer Puzzle survives in a (simple) DSGE model

 Allow to be stochastic

Also allows a "matching efficiency shock" $m(u_t, v_t) = \chi_t^{\alpha} u_t^{\alpha} v_t^{1-\alpha}$

☐ Can interpret as a type of "technology shock"...but doesn't do much...

November 17, 2011

DSGE Labor Search Model

NATURE OF **S**EPARATIONS?

- ☐ Is endogenous separation an important amplification mechanism for business cycles?
 - Andolfatto (1996 *AER*), Merz (1995 *JME*): exogenous separations, ala Pissarides (1985)
 - den Haan, Ramey, Watson (2000 AER): endogenous separations, ala Mortensen and Pissarides (1994)
- Mortensen and Pissarides (1994)
 - □ Aggregate TFP affects the cutoff threshold for endogenous job destruction
 - \Box i.e., $\tilde{a}'(z_i) < 0$
 - $\hfill\Box$ $\tilde{\it a_i}$ threshold level of idiosyncratic (match-specific) productivity below which that particular match is terminated
- den Haan, Ramey, Watson conjecture
 - □ Negative aggregate z_t shock \Rightarrow lowers k_t in current **and** future periods (standard RBC mechanism)
 - \square Because jobs are forward-looking in nature, lower future path of k_t makes it more attractive to destroy a job in t i.e., additional magnification through endogenous job destruction

November 17, 2011

MODEL DETAILS

Each match \emph{i} produces using capital, aggregate TFP, and idiosyncratic productivity

 $y_{it} = z_t \frac{a_{it}}{k_{it}} k_{it}^{\alpha}$

- a_{it} drawn from iid lognormal distribution with pdf f(.) and cdf F(.)П
- Baseline model: all decisions (including capital rental decisions) made after both aggregate and idiosyncratic productivity observed
- Bargaining-relevant value equations affected by ait

 $W(\mathbf{w}_{it}) = \mathbf{w}_{it} + PDV$

 $U(\mathbf{w}_{ii}) = b + PDV$

 $J(\mathbf{w}_{it}) = z_t \mathbf{a}_{it} k_{it}^{\alpha} - \mathbf{w}_{it} - r_t k_{it} + PDV$

- And destruction probability ρ_{it} now endogenous
- Overall destruction probability: $\rho_{it} = \rho^x + (1 \rho^x)\rho_{it}^n$

November 17, 2011

den Haan, Ramey, Watson Model

7

MODEL DETAILS

- Match i is destroyed if total surplus of match (taking into account capital rental decisions made after retention decision) falls below zero
 - i.e., with \mathbfit{k}_{it} chosen optimally if match continues,

$$W(w_{it}) - U(w_{it}) + J(w_{it}) = 0$$

- defines cutoff productivity \tilde{a}_{ii} Destroy match if a_{it} below threshold, retain if a_{it} above threshold
- Efficient job destruction
- Threshold determined by

$$\max_{k_{it}} \left[z_{it} a_{it} k_{it}^{\alpha} - r_{it} k_{it} \right] + PDV = b$$

- Endogenous job-destruction not present in Andolfatto (1996) and Merz
- Key observation: aggregate state z_t affects cutoff rule for a given match \rightarrow potential interaction between aggregate shocks and idiosyncratic shocks
 - Both directly...
 - ..and potentially indirectly through optimal k_{it} choices (the main dRW hypothesis)

November 17, 2011

den Haan, Ramey, Watson Model

MODEL DETAILS

☐ Matching function

$$m(u_t, v_t) = \frac{u_t v_t}{\left[u_t^{\kappa} + v_t^{\kappa}\right]^{1/\kappa}}$$

- □ Respects [0,1] matching probabilities
- Unlike Cobb-Douglas matching function
- ☐ (Urn-ball matching function also respects [0,1] matching probabilities see RSW 2005 *JEL* p. 974)
- Other model details virtually the same as Andolfatto (1996) and Merz (1995)
 - Full consumption insurance between individuals (i.e., "large household" assumption)
 - No labor-force participation choice
 - ☐ Value **b** of outside option exogenous
 - But the first to solve for the decentralized equilibrium of a DSGE search model (Andolfatto and Merz solved planner problems)

November 17, 2011

9

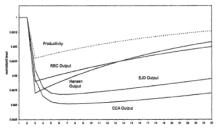
den Haan, Ramey, Watson Model

MODEL RESULTS

- ☐ Model decision rules approximated using parameterized expectations approach (Christiano and Fisher 2000 *JEDC*)
- ☐ Metrics used
 - ☐ Impact magnification: ratio of movement in GDP to exogenous shock to TFP in the period of the impulse
 - Total magnification: ratio of SD(GDP) to SD(TFP) across all time periods (obtained from simulations)
 - ☐ The difference: how quickly or slowly endogenous variables return to their steady state levels compared to speed with which TFP returns to its steady state level

TABLE 5—IMPACT AND TOTAL MAGNIFICATION

	EJD	RBC	Hansen	Fixed capital	Exogenous separation	CCA
Impact magnification Total magnification	1.28 2.45	1.57 1.55	1.86 1.86	1.30 1.85	1.00 1.25	1.52 2.85

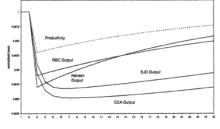

Baseline model

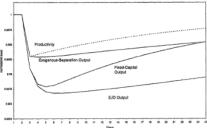
November 17, 2011

den Haan, Ramey, Watson Model

MODEL RESULTS

- ☐ Impact magnification vs. total magnification
 - The difference: how quickly or slowly endogenous variables return to their steady state levels compared to speed with which TFP returns to its steady state level


- □ Baseline RBC model and Hansen-Rogerson RBC model
 - ☐ Output response dies out at same rate as TFP impulse → total mag = impact mag
- Search model with endogenous separation
 - ☐ Output response dies out more slowly than TFP impulse → total mag > impact mag


November 17, 2011

den Haan, Ramey, Watson Model

MODEL RESULTS

- □ Impact magnification vs. total magnification
 - The difference: how quickly or slowly endogenous variables return to their steady state levels compared to speed with which TFP returns to its steady state level

- □ Baseline RBC model and Hansen-Rogerson RBC model
 - ☐ Output response dies out at same rate as TFP impulse → total mag = impact mag
 - Search model with endogenous separation
 - ☐ Output response dies out more slowly than TFP impulse → total mag > impact mag
 - Search model with exogenous separation
 - ☐ Output response dies out more slowly than TFP impulse → total mag > impact mag
 - ☐ But both measures of magnification smaller than with endogenous separation

November 17, 2011

den Haan, Ramey, Watson Model

Model Results

7	Table 5—	-IMPACT A	ND TOTAL M	AGNIFICATIO	N	
	EJD	RBC	Hansen	Fixed capital	Exogenous separation	CCA
Impact magnification	1.28	1.57	1.86	1.30	1.00	1.52
Total magnification	2.45	1.55	1.86	1.85	1.25	2.85

- □ Other robustness exercises
 - ☐ Fixed capital shut down capital adjustment
 - "Costly capital adjustment" capital rental decisions made before observation of idiosyncratic productivity
 - \Box i.e., k_{it} NOT a function of a_{it}
 - ☐ Persistent component of idiosyncratic productivity
 - ☐ Total magnification: 2.43, similar to with pure iid idiosyncratic shocks
 - □ Not many details provided...

November 17, 2011

DSGE Modeling of Endogenous Destruction

ENDOGENOUS DESTRUCTION

- □ An alternative (but equivalent) formulation to dRW implementation
 - Based on (but not identical to) Krause and Lubik (2007 JME)
- ☐ Representative "large firm" (if focusing on symmetric general equilibrium)

$$\max_{v_t, n_t^f} E_0 \left[\sum_{t=0}^{\infty} \Xi_{t|0} \left(y_t - \Omega_t n_t^f - \gamma v_t \right) \right]$$

s.t.
$$n_t^f = (1 - \rho_t)(n_{t-1}^f + v_t k^f(\theta_t))$$

November 17, 2011 14

- ☐ An alternative (but equivalent) formulation to dRW implementation
 ☐ Based on (but not identical to) Krause and Lubik (2007 *JME*)
- Representative "large firm" (if focusing on symmetric general equilibrium)

$$\max_{v_t, n_t^f} E_0 \left[\sum_{t=0}^{\infty} \Xi_{t|0} \left(y_t - \Omega_t n_t^f - \gamma v_t \right) \right]$$

s.t. $n_t^f = (1 - \rho_t)(n_{t-1}^f + v_t k^f(\theta_t))$

Endogenous destruction fraction ρ_t And note timing of employment...

□ Total production depends on aggregate TFP and conditional mean productivity of job matches that are not destroyed

$$y_{t} = z_{t} n_{t}^{f} \int_{\tilde{a}_{t}}^{\infty} a \frac{f(a)}{1 - F(\tilde{a}_{t})} da \equiv z_{t} n_{t}^{f} H(\tilde{a}_{t})$$

f(.) the pdf of idiosyncratic productivity, F(.) the cdf

(could pull denominator out of integral...does not depend on index a)

 \square Ω_t is average wage bill of firm, $\Omega_t = \int\limits_a^\infty w(a) \frac{f(a)}{1 - F(\tilde{a}_t)} da$

November 17, 2011

15

DSGE Modeling of Endogenous Destruction

ENDOGENOUS DESTRUCTION

☐ Representative "large firm"

$$\max_{v_t, n_t^f} E_0 \left[\sum_{t=0}^{\infty} \Xi_{t|0} \left(z_t n_t^f H(\tilde{a}_t) - \Omega_t n_t^f - \gamma v_t \right) \right]$$

s.t.
$$n_t^f = (1 - \rho_t)(n_{t-1}^f + v_t k^f(\theta_t))$$

November 17, 2011

Representative "large firm"

$$\max_{v_{t}, n_{t}^{f}} E_{0} \left[\sum_{t=0}^{\infty} \Xi_{t|0} \left(z_{t} n_{t}^{f} H(\tilde{a}_{t}) - \Omega_{t} n_{t}^{f} - \gamma v_{t} \right) \right] \qquad \rho_{t}^{n} = F(\tilde{a}_{t}) \left(= \int_{0}^{\tilde{a}_{t}} af(a) da \right)$$

$$\text{s.t. } n_{t}^{f} = (1 - \rho(\tilde{a}_{t}))(n_{t-1}^{f} + v_{t} k^{f}(\theta_{t})) \qquad \rho_{t}^{n} = \rho^{x} + (1 - \rho^{x})\rho_{t}^{n}$$

$$\rho_{t}^{n} = F(\tilde{a}_{t}) \left(= \int_{0}^{\tilde{a}_{t}} af(a)da \right)$$

s.t.
$$n_t^f = (1 - \rho(\tilde{a}_t))(n_{t-1}^f + v_t k^f(\theta_t))$$

November 17, 2011

DSGE Modeling of Endogenous Destruction

ENDOGENOUS DESTRUCTION

Representative "large firm"

$$\max_{v_t, n_t^f} E_0 \left[\sum_{t=0}^{\infty} \Xi_{t|0} \left(z_t n_t^f H(\tilde{a}_t) - \Omega_t n_t^f - \gamma v_t \right) \right]$$

$$\rho_t^n = F(\tilde{a}_t) \left(= \int_0^{\tilde{a}_t} af(a) da \right)$$

s.t.
$$n_t^f = (1 - \rho(\tilde{a}_t))(n_{t-1}^f + v_t k^f(\theta_t))$$

$$\rho_t = \rho^x + (1 - \rho^x) \rho_t^n$$

FOCs with respect to n_t and v_t yield job-creation condition

$$\frac{\gamma}{k^{f}(\theta_{t})} = E_{t} \left[\Xi_{t+1|t} (1 - \rho(\tilde{\boldsymbol{a}}_{t+1})) \left(z_{t+1} \boldsymbol{H}(\tilde{\boldsymbol{a}}_{t+1}) - \Omega_{t+1} + \frac{\gamma}{k^{f}(\theta_{t+1})} \right) \right]$$

Vacancy-creation decision in \boldsymbol{t} depends on expectations about future endogenous separation rate and (effective conditional) productivity

November 17, 2011

Bargaining-relevant value equations for match with realized a_t

$$W(a_{t}) = w(a_{t}) + E_{t} \left\{ \Xi_{t+1|t} \left[(1 - \rho_{t+1}) \int_{\tilde{a}_{t+1}}^{\infty} W(a) \frac{f(a)}{1 - F(\tilde{a}_{t+1})} da + \rho_{t+1} U(a_{t+1}) \right] \right\}$$

$$U(a_{t}) = b + E_{t} \left\{ \Xi_{t+1|t} \left[k^{h}(\theta_{t})(1 - \rho_{t+1}) \int_{\tilde{a}_{t+1}}^{\infty} W(a) \frac{f(a)}{1 - F(\tilde{a}_{t+1})} da + (1 - k^{h}(\theta_{t})(1 - \rho_{t+1}))U(a_{t+1}) \right] \right\}$$

$$J(a_{t}) = z_{t}a_{t} - w(a_{t}) + E_{t} \left\{ \Xi_{t+1|t} (1 - \rho_{t+1}) \int_{\tilde{a}_{t+1}}^{\infty} J(a) \frac{f(a)}{1 - F(\tilde{a}_{t+1})} da \right\}$$

November 17, 2011

DSGE Modeling of Endogenous Destruction

ENDOGENOUS DESTRUCTION

Bargaining-relevant value equations for match with realized a_t

$$W(a_{t}) = w(a_{t}) + E_{t} \left\{ \Xi_{t+1|t} \left[(1 - \rho_{t+1}) \int_{\tilde{a}_{t+1}}^{\infty} W(a) \frac{f(a)}{1 - F(\tilde{a}_{t+1})} da + \rho_{t+1} U(a_{t+1}) \right] \right\}$$

$$U(a_{t}) = b + E_{t} \left\{ \Xi_{t+1|t} \left[k^{h}(\theta_{t})(1 - \rho_{t+1}) \int_{\tilde{a}_{t+1}}^{\infty} W(a) \frac{f(a)}{1 - F(\tilde{a}_{t+1})} da + (1 - k^{h}(\theta_{t})(1 - \rho_{t+1}))U(a_{t+1}) \right] \right\}$$

$$J(a_{t}) = z_{t}a_{t} - w(a_{t}) + E_{t} \left\{ \Xi_{t+1|t} (1 - \rho_{t+1}) \int_{\tilde{a}_{t+1}}^{\infty} J(a) \frac{f(a)}{1 - F(\tilde{a}_{t+1})} da \right\}$$

Insert in usual Nash sharing rule $\eta(W(a_{\scriptscriptstyle l})-U(a_{\scriptscriptstyle l}))=(1-\eta)J(a_{\scriptscriptstyle l})$

 $w(a_{_{l}}) = \eta \Big[z_{_{l}}a_{_{l}} + \gamma \theta_{_{l}}\Big] + (1 - \eta)b \\ \qquad \qquad \text{For an individual job with idiosyncratic productivity $a_{_{l}}$ and which is not destroyed... a straightforward generalization}$

November 17, 2011

 \square Wage payment in individual job with productivity a_t

$$w(a_t) = \eta \left[z_t a_t + \gamma \theta_t \right] + (1 - \eta)b$$

□ Average (per-employee) wage bill of representative "large firm"

☐ Integrate over all jobs that are not destroyed

$$\Omega_{t} \equiv \int_{\tilde{a}_{t}}^{\infty} w(a) \frac{f(a)}{1 - F(\tilde{a}_{t})} da = \eta z_{t} \int_{\tilde{a}_{t}}^{\infty} a \frac{f(a)}{1 - F(\tilde{a}_{t})} da + \eta \gamma \theta_{t} + (1 - \eta)b$$

$$\equiv H(\tilde{a}_{t})$$

November 17, 2011 21

DSGE Modeling of Endogenous Destruction

ENDOGENOUS DESTRUCTION

 \square Wage payment in individual job with productivity a_t

$$w(a_t) = \eta \left[z_t a_t + \gamma \theta_t \right] + (1 - \eta)b$$

☐ Average (per-employee) wage bill of representative "large firm"

☐ Integrate over all jobs that are not destroyed

$$\Omega_{t} \equiv \int_{\tilde{a}_{t}}^{\infty} w(a) \frac{f(a)}{1 - F(\tilde{a}_{t})} da = \eta z_{t} \int_{\tilde{a}_{t}}^{\infty} a \frac{f(a)}{1 - F(\tilde{a}_{t})} da + \eta \gamma \theta_{t} + (1 - \eta)b$$

$$\equiv H(\tilde{a}_{t})$$

 \square Pin down threshold **a** from condition J(a) = 0

 $\Box \qquad \text{Equivalent to using } W(a) - U(a) = 0$

☐ Equivalent to using vacancy-creation condition evaluated at the threshold job

$$\tilde{a}_{t} = \frac{1}{z_{t}} \left[b + \frac{1}{1 - \eta} \left(\eta \gamma \theta_{t} - \frac{\gamma}{k^{f}(\theta_{t})} \right) \right] \qquad \qquad \tilde{a}'(z_{t}) < 0$$

□ Aggregate resource constraint $c_t + \gamma v_t = z_t H(\tilde{a}_t) + b$

November 17, 2011 22