BASICS OF DYNAMIC STOCHASTIC GENERAL EQUILIBRIUM

SEPTEMBER 6, 2011

Towards A Representative Consumer **HETEROGENEITY** Implementing representative consumer An infinity of consumers, each indexed by a point on the unit interval [0,1] Each individual is identical in preferences and endowments Implies aggregate consumption demand and asset demand Aggregate consumption demand One individual's consumption x 1 = One individual's x 1 Under some particular types of heterogeneity, a representative-consumer foundation of aggregates exists □ Provided complete set of Arrow-Debreu securities exists... ...to allow individuals to diversify away (insure) their idiosyncratic risk **Consider heterogeneity** ☐ In income realizations (from Markov process) In initial asset holdings a In utility functions (application to CRRA utility) Example: two types of individuals to illustrate September 6, 2011

HETEROGENEITY

□ Two types of individuals, $i \in \{1,2\}$, each with population weight 0.5

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u^i(c^i_t) \quad \text{subject to} \ \ c^i_t + \sum_j R^j_t a^{ij}_t = y^i_t + a^i_{t-1}$$

Optimization between period t and state j in period t+1 (conditional on period t outcomes)

$$\frac{u_c^1(c_t^1)}{\beta u_c^1(c_{t+1}^{1j})} = \frac{R_t^j}{p_{t+1}^j} \qquad \quad \frac{R_t^j}{p_{t+1}^j} = \frac{u_c^2(c_t^2)}{\beta u_c^2(c_{t+1}^{2j})}$$

Given all individuals base choices on same prices and probabilities

September 6, 2011

3

Towards A Representative Consumer

RISK SHARING

□ Two types of individuals, $i \in \{1,2\}$, each with population weight 0.5

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u^i(c^i_t) \quad \text{subject to} \quad c^i_t + \sum_i R^j_t a^{ij}_t = y^i_t + a^i_{t-1}$$

Optimization between period t and state j in period t+1 (conditional on period t outcomes)

$$\frac{u_c^1(c_t^1)}{\beta u_c^1(c_{t+1}^{1j})} = \frac{u_c^2(c_t^2)}{\beta u_c^2(c_{t+1}^{2j})}$$

In all states at all dates

- □ PERFECT RISK SHARING
 - IMRS, for each state j, equated across individuals
 - Individuals experiencing idiosyncratic shocks can insure them away (provided complete markets)
- \square Risk sharing about equalizing fluctuations of u'(.) across individuals
 - \square Not about equalizing levels of u'(.) or consumption over time
- If initial conditions, period-zero outcomes, and u(.) are identical (e.g., due to identical a_0 and realized y_0), then risk sharing → identical outcomes \forall t

→ A representative consumer

September 6, 2011

RISK SHARING

Two types of individuals, $i \in \{1,2\}$, each with population weight 0.5

 $\max E_0 \sum_{t=0}^{\infty} \beta^t u^i(c^i_t) \quad \text{subject to} \ c^i_t + \sum_j R^j_t a^{ij}_t = y^i_t + a^i_{t-1}$

Optimization between period t and state j in period t+1 (conditional on period t outcomes)

 $\frac{u_c^1(c_i^1)}{\beta u_c^1(c_{t+1}^{1j})} = \frac{u_c^2(c_t^2)}{\beta u_c^2(c_{t+1}^{2j})}$ In all states at all dates

- □ PERFECT RISK SHARING
 - \Box IMRS, for each state j, equated across individuals
 - Individuals experiencing idiosyncratic shocks can insure them away (provided complete markets)
- ☐ If initial conditions, period-zero outcomes, and u(.) are identical (e.g., due to identical a_0 and realized y_0), then risk sharing \rightarrow identical outcomes \forall t

Risk sharing across individuals \approx consumption smoothing for a given individual (= if initial conditions, t=0 outcomes, and u(.) identical)

September 6, 2011

5

Towards A Representative Consumer

RISK SHARING

☐ Example: CRRA utility, but heterogenous RRA/IES

 $\sigma^1 \neq \sigma^2$

$$\left(\frac{c_t^1}{c_{t+1}^{1j}}\right)^{-\sigma^1} = \left(\frac{c_t^2}{c_{t+1}^{2j}}\right)^{-\sigma^2}$$

Perfect risk sharing

- ☐ IMRS equated across individuals
- □ Growth rates of consumption **not** equated unless $\sigma^1 = \sigma^2$

$$\frac{c_{t+1}^{1j}}{c_t^1} = \left(\frac{c_{t+1}^{2j}}{c_t^2}\right)^{\sigma^2/\sigma^1}$$

September 6, 2011

AGGREGATION

Example: CRRA utility, but heterogenous RRA/IES

 $\sigma^1 \neq \sigma^2$

$$\left(\frac{c_{t}^{1}}{c_{t+1}^{1j}}\right)^{-\sigma^{1}} = \left(\frac{c_{t}^{2}}{c_{t+1}^{2j}}\right)^{-\sigma^{2}}$$

Perfect risk sharing

- IMRS equated across individuals
- Growth rates of consumption not equated unless $\sigma^1 = \sigma^2$

$$\frac{c_{t+1}^{1j}}{c_t^1} = \left(\frac{c_{t+1}^{2j}}{c_t^2}\right)^{\sigma^2/\sigma^1}$$

- Allocations are Pareto-optimal (implied by First Welfare Theorem)
 - All MRS's (across individuals, states, and dates) are equated
 - Even though levels of consumption may differ across individuals
 - No individual can be made better off without making some agent worse off
 - (Pareto welfare concept takes distributions of outcomes as given)
 - Due to complete financial markets
- Pareto-optimal allocations + heterogeneity of utility functions
 - There exists a utility function u(c) in aggregate $c \equiv c^1 + c^2$ that leads to the same aggregates (Constantanides (1982)); if CRRA, u(.) has $\sigma \in (\sigma^1, \sigma^2)$

September 6, 2011

7

Towards A Representative Consumer

AGGREGATION

Example: CRRA utility, but heterogenous RRA/IES

 $\sigma^1 \neq \sigma^2$

$$\left(\frac{c_{t}^{1}}{c_{t+1}^{1j}}\right)^{-\sigma^{1}} = \left(\frac{c_{t}^{2}}{c_{t+1}^{2j}}\right)^{-\sigma^{2}}$$

Perfect risk sharing

- IMRS equated across individuals
- Growth rates of consumption not equated unless $\sigma^1 = \sigma^2$

$$\frac{c_{t+1}^{1j}}{c_t^1} = \left(\frac{c_{t+1}^{2j}}{c_t^2}\right)^{\sigma^2/\sigma^1}$$

- Allocations are Pareto-optimal (implied by First Welfare Theorem)
 - All MRS's (across individuals, states, and dates) are equated
 - Even though levels of consumption may differ across individuals
 - No individual can be made better off without making some agent worse off
 - (Pareto welfare concept takes distributions of outcomes as given)
 - Due to complete financial markets
- Pareto-optimal allocations + heterogeneity of utility functions
 - There exists a utility function u(c) in aggregate $c \equiv c^1 + c^2$ that leads to the same aggregates; proof relies on general equilibrium theory

AGGREGATION

□ Now consider economy-wide aggregates

 $c_t = 0.5c_t^1 + 0.5c_t^2$ $y_t = 0.5y_t^1 + 0.5y_t^2$

 $a_t = 0.5a_t^1 + 0.5a_t^2$

(For each type of asset)

Aggregate consumption

Aggregate income (endowment)

Aggregate assets?

September 6, 2011

9

Towards A Representative Consumer

AGGREGATION

□ Now consider economy-wide aggregates

 $c_{t} = 0.5c_{t}^{1} + 0.5c_{t}^{2}$ $y_{t} = 0.5y_{t}^{1} + 0.5y_{t}^{2}$

Aggregate consumption

Aggregate income (endowment)

(For each type of asset)

 $a_t = 0.5a_t^1 + 0.5a_t^2$

Aggregate assets?

- ☐ So far have been considering assets as claims (paper!) (partial equilibrium)
- $\ \square$ In aggregate, must be some tangible asset(s) backing them (gen. equil.)
- □ No physical assets in model so far $\rightarrow a_t = 0$ in aggregate $\forall t!$

September 6, 2011

AGGREGATION

Now consider economy-wide aggregates

> $c_t = 0.5c_t^1 + 0.5c_t^2$ $y_t = 0.5 y_t^1 + 0.5 y_t^2$ $0 = a_t = 0.5a_t^1 + 0.5a_t^2$

(endowment) Aggregate assets = 0 if no physical assets

Aggregate consumption Aggregate income

(For each type of asset)

- So far have been considering assets as claims (paper!) (partial equilibrium)
- In aggregate, must be some tangible asset(s) backing them (gen. equil.)
- No physical assets in model so far $\rightarrow a_t = 0$ in aggregate $\forall t!$
- Heterogeneous individuals creating/buying/selling assets vis-à-vis each
- **Richer models**
 - Mediate through "banking" or "insurance" markets, etc.
 - But only meaningful if some friction/imperfections in model of financial markets...
 - ...otherwise identical outcomes (in which case "banking" sector is a "veil")

September 6, 2011

Towards A Representative Consumer

(endowment)

AGGREGATION

Economy-wide aggregates

 $c_t = 0.5c_t^1 + 0.5c_t^2$ $y_t = 0.5 y_t^1 + 0.5 y_t^2$

Aggregate consumption **Aggregate income**

Asset market clearing condition (for each type of asset)

 $0 = a_t = 0.5a_t^1 + 0.5a_t^2$

Aggregate assets = 0 if no <u>physical</u> assets

- $\textbf{Aggregate savings} = a_t a_{t-1} = \mathbf{0} \; \forall \; t$
- Aggregate together two types' budget constraints

$$c_t^1+\sum_j R_t^j a_t^{1j}=y_t^1+a_{t-1}^1 \qquad \qquad c_t^2+\sum_j R_t^j a_t^{2j}=y_t^2+a_{t-1}^2$$
 Weight by share of population

$$\Rightarrow 0.5(c_t^1 + c_t^2) + \sum_j R_i^j 0.5(a_t^{1j} + a_t^{2j}) = 0.5(y_t^1 + y_t^2) + 0.5(a_{t-1}^1 + a_{t-1}^2)$$

AGGREGATION

Economy-wide aggregates

$$c_t = 0.5c_t^1 + 0.5c_t^2$$
$$y_t = 0.5y_t^1 + 0.5y_t^2$$

Aggregate consumption Aggregate income (endowment)

Asset market clearing condition (for each type of asset)

 $0 = a_t = 0.5a_t^1 + 0.5a_t^2$

Aggregate assets = 0 if no physical assets

- $\textbf{Aggregate savings} = a_t a_{t-1} = \mathbf{0} \; \forall \; t$
- Aggregate together two types' budget constraints

$$c_{t}^{1} + \sum_{i} R_{t}^{j} a_{t}^{1j} = y_{t}^{1} + a_{t-1}^{1}$$

$$c_{t}^{2} + \sum_{i} R_{t}^{j} a_{t}^{2j} = y_{t}^{2} + a_{t-1}^{2}$$

- Weight by share of population
- Impose asset-market clearing condition(s)

$$\Rightarrow 0.5(c_t^1 + c_t^2) + \sum_{j} R_t^{j} 0.5(\underline{a_t^{1j} + a_t^{2j}}) = 0.5(y_t^1 + y_t^2) + 0.5(\underline{a_{t-1}^1 + a_{t-1}^2}) = 0.5(y_t^1 + y_t^2) + 0.5(y_t^1 + y_t^2) = 0.5(y_t^1 + y_t^2$$

September 6, 2011

Towards A Representative Consumer

AGGREGATION

Economy-wide aggregates

$$c_{t} = 0.5c_{t}^{1} + 0.5c_{t}^{2}$$

$$y_{t} = 0.5 y_{t}^{1} + 0.5 y_{t}^{2}$$

Aggregate consumption **Aggregate income** (endowment)

Asset market clearing condition (for each type of asset)

 $0 = a_t = 0.5a_t^1 + 0.5a_t^2$

Aggregate assets = 0 if no *physical* assets

- $\textbf{Aggregate savings} = a_t a_{t-1} = \mathbf{0} \; \forall \; t$
- Aggregate together two types' budget constraints

A general procedure for constructing economywide resource constraint

goods available = goods used

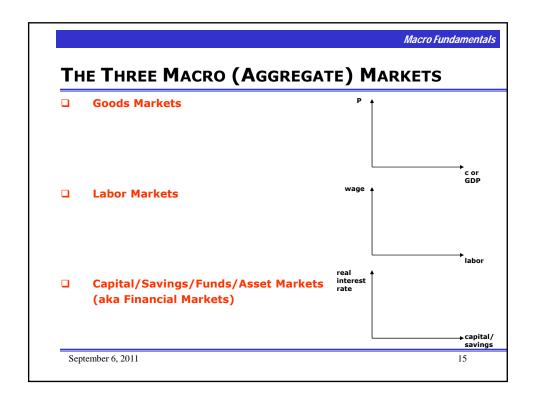
 $c_{t}^{1} + \sum_{j} R_{t}^{j} a_{t}^{1j} = y_{t}^{1} + a_{t-1}^{1}$ $c_{t}^{2} + \sum_{j} R_{t}^{j} a_{t}^{2j} = y_{t}^{2} + a_{t-1}^{2}$ Weight by share of population Impose asset-market clearing condition(s)

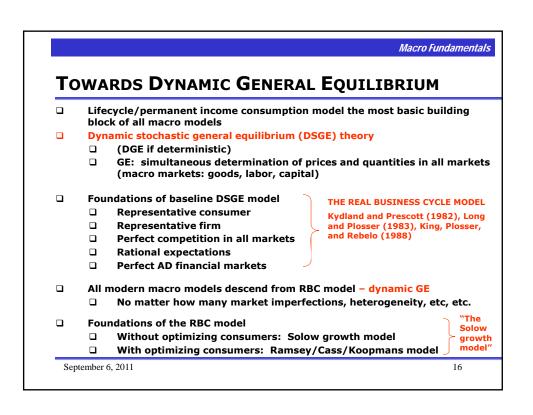
$$\Rightarrow 0.5(c_t^1 + c_t^2) + \sum_j R_i^j 0.5(\underline{a_t^{1j} + a_t^{2j}}) = 0.5(y_t^1 + y_t^2) + 0.5(\underline{a_{t-1}^1 + a_{t-1}^2})$$

$$= 0 \forall j$$

 $\Rightarrow c_t = y_t$

Goods market clearing condition - aka resource constraint





TOWARDS DYNAMIC GENERAL EQUILIBRIUM

 $y_t + (1 + r_t)a_{t-1}$

- Model of non-asset income so far: endowment y_t, possibly stochastic
- \square Now suppose y_t is labor income

 $y_t = w_t n_t$

- □ Normalize "time available" in each time period to one unit
 - ☐ Individual decides how to divide between "labor" and "leisure"
 - (Basic models: leisure is all "non-labor," but empirical and theoretical work recently studying the importance of finer categorizations of "non-labor time" for macro issues – e.g., search and matching theory)
 - □ Labor = $n_t \leftrightarrow$ leisure $\equiv l_t = 1 n_t$
 - □ Time is now the <u>endowment!</u>

September 6, 2011

17

Macro Fundamentals

TOWARDS DYNAMIC GENERAL EQUILIBRIUM

 $y_t + (1 + r_t)a_{t-1}$

- \Box Model of non-asset income so far: endowment y_t , possibly stochastic
- □ Now suppose y_t is labor income

v = w n

- ☐ Normalize "time available" in each time period to one unit
 - ☐ Individual decides how to divide between "labor" and "leisure"
 - (Basic models: leisure is all "non-labor," but empirical and theoretical work recently studying the importance of finer categorizations of "non-labor time" for macro issues – e.g., search and matching theory)
 - □ Labor = $n_t \leftarrow \rightarrow$ leisure $\equiv I_t = \mathbf{1} n_t$
 - ☐ Time is now the <u>endowment!</u>
- lacksquare Assert that individuals care about leisure, $u(c_{i},\ell_{i})$
 - $u_{ct} > 0$, $u_{lt} > 0$, $u_{cct} < 0$, $u_{llt} < 0$
 - Inada conditions on both $\it c$ and $\it l$
- $\label{eq:convenient} \ensuremath{\mathbf{Q}} \qquad \ensuremath{\mathsf{Sometimes}} \ensuremath{\mathsf{more}} \ensuremath{\mathsf{convenient}} \ensuremath{\mathsf{to}} \ensuremath{\mathsf{represent}} \ensuremath{\mathsf{as}} \ensuremath{u(c_{\iota}, n_{\iota})}$
 - $u_{ct} > 0$, $u_{nt} < 0$, $u_{cct} < 0$, $u_{nnt} > 0$ (strictly decreasing and convex in n)

September 6, 2011

TOWARDS DYNAMIC GENERAL EQUILIBRIUM

☐ Intertemporal optimization problem

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, \mathbf{n}_t^{\mathbf{S}}) \text{ subject to } \quad c_t + a_t = w_t \mathbf{n}_t^{\mathbf{S}} + (1+r_t) a_{t-1}$$

- Individual takes as given {w_t, r_t}_{t=0,1,2,...} -- price-taker in labor market
 From perspective of individual, (w,r) evolve as Markov
- □ Notation n^S emphasizes individual's supply of labor

September 6, 2011

Macro Fundamentals

TOWARDS DYNAMIC GENERAL EQUILIBRIUM

☐ Intertemporal optimization problem

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, \mathbf{n}_t^{\mathbf{S}}) \text{ subject to } \quad c_t + a_t = w_t \mathbf{n}_t^{\mathbf{S}} + (1+r_t) a_{t-1}$$

- □ Individual takes as given $\{w_{tr}, r_t\}_{t=0,1,2,...}$ -- price-taker in labor market
 - ☐ From perspective of individual, (w,r) evolve as Markov
- □ Notation *n*^S emphasizes individual's supply of labor
- □ Recursive representation
 - State vector in arbitrary period t: $[a_{t-1}; w_{tt} r_t]$ Numeraire object: consumption

$$V(a_{t-1}; w_t, r_t) = \max_{\left\{c_t, n_t^S, a_t\right\}} \left\{ u(c_t, \textcolor{red}{n_t^S}) + \beta E_t V(a_t; w_{t+1}, r_{t+1}) \right\}$$

subject to $c_t + a_t = w_t n_t^s + (1 + r_t) a_{t-1}$

- □ FOCs
 - c_t :
 - n^st:

September 6, 2011

LABOR SUPPLY

☐ Intertemporal optimization problem

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, \textbf{\textit{n}}_t^{\textbf{\textit{S}}}) \ \ \text{subject to} \quad \ c_t + a_t = w_t \textbf{\textit{n}}_t^{\textbf{\textit{S}}} + (1+r_t) a_{t-1}$$

- Individual takes as given $\{w_t, r_t\}_{t=0,1,2,...}$ -- price-taker in labor market From perspective of individual, (w,r) evolve as Markov
- Notation n^S emphasizes individual's supply of labor
- ☐ Recursive representation
 - □ State vector in arbitrary period t: $[a_{t-1}; w_{t}, r_{t}]$ Numeraire object: consumption

$$V(a_{t-1}; w_t, r_t) = \max_{\left\{c_t, n_t^s, a_t\right\}} \left\{ u(c_t, n_t^s) + \beta E_t V(a_t; w_{t+1}, r_{t+1}) \right\}$$

subject to
$$c_t + a_t = w_t n_t^s + (1 + r_t) a_{t-1}$$

□ FOCs

 c_t :

CONSUMPTION-LEISURE OPTIMALITY CONDITION

A static condition

September 6, 2011

21

Macro Fundamentals

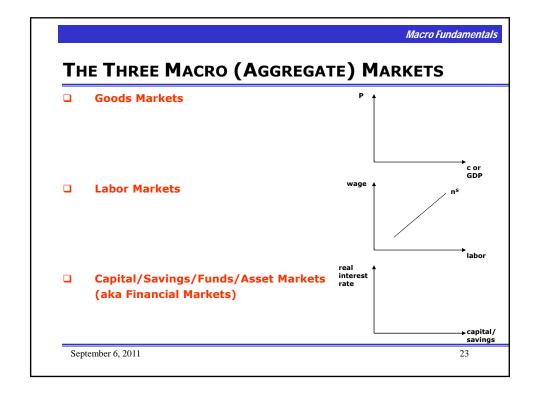
LABOR SUPPLY

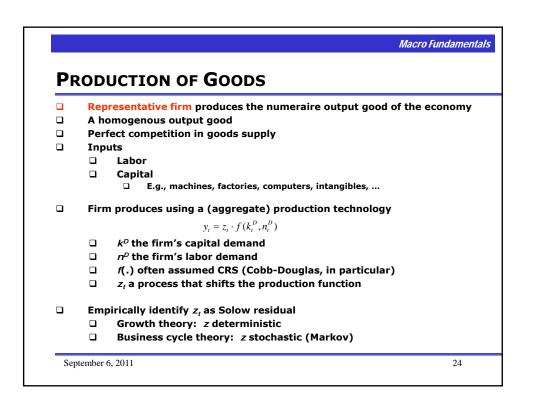
$$-\frac{u_n(c_t, n_t^s)}{u_c(c_t, n_t^s)} = w_t \qquad \Rightarrow \quad n_t^s = n^s(w_t; c_t)$$

- ☐ Consumption-leisure (aka consumption-labor) optimality condition
 - An intratemporal optimality condition
- \Box Defines period-t labor supply function
 - ☐ For given individual...
 - □ ...but if representative agent, equivalent to aggregate labor supply
 - \square Note: for given c
- □ **Example:** $u(c,n) = \ln c \frac{\theta}{1+1/\psi} n^{1+1/\psi}$
 - □ Compute labor supply function?
 - □ Compute elasticity of n^{S_t} with respect to w_t ?

Frisch elasticity of labor supply

September 6, 2011 22





PRODUCTION OF GOODS

- □ Representative firm profit maximization
 - □ Price taker in capital market, labor market, and output market
 - □ Baseline model(s)
 - ☐ Firm hires/rents labor and capital each period
 - Firm does not "own" any capital or labor (without loss of generality if no financial market imperfections)

$$\max_{n_{t}^{D}, k_{t}^{D}} \left(z_{t} f(k_{t}^{D}, n_{t}^{D}) - w_{t} n_{t}^{D} - r_{t}^{k} k_{t}^{D} \right)$$

- □ FOCs
 - $n^{D}t$: $z_{t}f_{n}(k_{t}^{D}, n_{t}^{D}) w_{t} = 0$
 - $k^{D}_{t}: z_{t}f_{k}(k_{t}^{D}, n_{t}^{D}) r_{t}^{k} = 0$

September 6, 2011

Macro Fundamentals

PRODUCTION OF GOODS

- □ Representative firm profit maximization
 - ☐ Price taker in capital market, labor market, and output market
 - □ Baseline model(s)
 - ☐ Firm hires/rents labor and capital each period
 - □ Firm does not "own" any capital or labor (without loss of generality if no financial market imperfections)

$$\max_{n_{t}^{D},k_{t}^{D}}\left(z_{t}f(k_{t}^{D},n_{t}^{D})-w_{t}n_{t}^{D}-r_{t}^{k}k_{t}^{D}\right)$$

□ FOCs

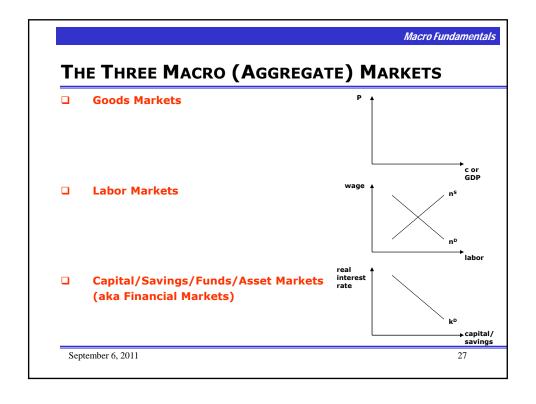
 $n^{D}_{t}: z_{t}f_{n}(k_{t}^{D}, n_{t}^{D}) - w_{t} = 0$ **DEFINES** labor demand function $n^{D}(w_{t})$

If rep. firm, equivalent to aggregate factor

 k^{D}_{t} : $z_{t}f_{k}(k_{t}^{D}, n_{t}^{D}) - r_{t}^{k} = 0$ **DEFINES** capital demand function $k^{D}(r^{k}_{t})$

- ☐ Firms entirely static entities in baseline macro model(s)
 - ☐ Contrast with consumers
 - (NK theory and search theory: firms are dynamic entities)

September 6, 2011



CAPITAL SUPPLY

- □ Baseline model(s)
 - ☐ Physical capital takes "time to build"
 - ☐ Simplest: one-period lag between building and using capital
 - □ Closed economy
 - Aggregate capital demand must be supplied domestically
- □ Consumer intertemporal optimization problem

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, n_t^S)$$
 subject to $c_t + a_t = w_t n_t^S + (1 + r_t) a_{t-1}$

- \Box a_{t-1} is a given individual's pre-determined stock of assets
- \square Representative agent: a_{t-1} is economy's pre-determined stock of assets

September 6, 2011

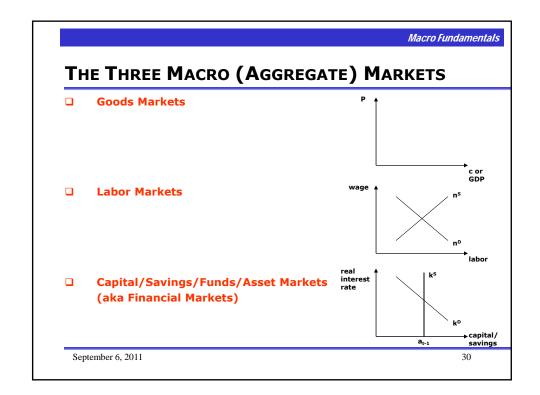
CAPITAL SUPPLY

- Baseline model(s)
 - Physical capital takes "time to build"
 - $\hfill \square$
 - **Closed economy**
 - Aggregate capital demand must be supplied domestically
- **Consumer intertemporal optimization problem**

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, n_t^S) \text{ subject to } c_t + a_t = w_t n_t^S + (1+r_t) a_{t-1}$$

- $a_{t\cdot 1}$ is a given individual's pre-determined stock of assets Representative agent: $a_{t\cdot 1}$ is economy's pre-determined stock of assets
- Capital-market clearing in each period t

$$k_t^D = a_{t-1} \left(= k_t^S \right)$$



CAPITAL SUPPLY

- Baseline model(s)
 - Physical capital takes "time to build"
 - $\hfill \square$
 - **Closed economy**
 - Aggregate capital demand must be supplied domestically
- Consumer intertemporal optimization problem

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, n_t^S) \text{ subject to } c_t + a_t = w_t n_t^S + (1+r_t) a_{t-1}$$

- $a_{t\cdot 1}$ is a given individual's pre-determined stock of assets Representative agent: $a_{t\cdot 1}$ is economy's pre-determined stock of assets
- Capital-market clearing in each period t

$$k_t^D = a_{t-1} \left(= k_t^S \right)$$

- Capital depreciates at rate δ each period
 - Economic depreciation, due to physical wear and tear of production
 - Not accounting depreciation
 - Compensation reflected in capital-market-clearing price: $r_t = r^k_t - \delta$

September 6, 2011

Macro Fundamentals

CAPITAL SUPPLY

- Capital depreciates at rate δ each period
 - Compensation reflected in capital-market-clearing price: $r_t = r^k_t \delta$
- Implies capital supply has to be periodically replenished
 - From where?

CAPITAL SUPPLY

- \Box Capital depreciates at rate δ each period
 - □ Compensation reflected in capital-market-clearing price: $r_t = r^{k_t} \delta$
- ☐ Implies capital supply has to be periodically replenished
 - ☐ From where?
- □ Consumer intertemporal optimization problem

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, n_t^S) \text{ subject to } c_t + a_t = w_t n_t^S + (1+r_t) a_{t-1}$$

□ Euler equation

$$u'(c_t) = \beta E_t \left\{ u'(c_{t+1})(1 + r_{t+1}^k - \delta) \right\}$$

- ☐ From perspective of single individual: characterizes optimal savings (flow!) decision between t and t+1
- □ From perspective of entire economy: characterizes optimal investment (flow!) in capital stock between t and t+1
- □ Closed economy: domestic savings = domestic investment
- Note timing: savings/investment decisions in t alter the available capital stock in period t+1 ("time to build")

September 6, 2011

Macro Fundamentals

TOWARDS DYNAMIC GENERAL EQUILIBRIUM

- □ Round out final details
- □ Baseline model(s)
 - □ Consumption goods and capital goods are freely interchangeable
 - i.e., capital good in a given period can be "dismantled" and used for consumption in future periods
 - No irreversibility of investment process
 - ☐ Implies relative price (not interest rate...) of capital = ...?...

September 6, 2011 34

TOWARDS DYNAMIC GENERAL EQUILIBRIUM

- □ Round out final details
- □ Baseline model(s)
 - Consumption goods and capital goods are freely interchangeable
 - i.e., capital good in a given period can be "dismantled" and used for consumption in future periods
 - No irreversibility of investment process
 - ☐ Implies relative price (not interest rate...) of capital = ...?...
- □ CRS production process f(k,n), firms earn profits = ...?...
 - □ Corollary: factors of production are paid ...?...

September 6, 2011

35

Macro Fundamentals

TOWARDS DYNAMIC GENERAL EQUILIBRIUM

- □ Round out final details
- □ Baseline model(s)
 - □ Consumption goods and capital goods are freely interchangeable
 - i.e., capital good in a given period can be "dismantled" and used for consumption in future periods
 - No irreversibility of investment process
 - ☐ Implies relative price (not interest rate...) of capital = ...?...
- □ CRS production process f(k,n), firms earn profits = ...?...
 - ☐ Corollary: factors of production are paid ...?...
- □ Labor-market clearing

 $\mathbf{n_t} \equiv \mathbf{n^{D_t}} = \mathbf{n^{S_{t,}}} \ \forall \ \mathbf{t}$ (with clearing price w_t)

□ Capital-market clearing

 $k_t \equiv k_t^D = k_t^S$, $\forall t$ (with clearing price r^k)

□ Goods market clearing

 $c_t + k_{t+1} - (1-\delta)k_t = z_t f(k_t, n_t), \forall t \text{ (with clearing price = ...?...)}$

September 6, 2011

DYNAMIC GENERAL EQUILIBRIUM

- □ Economy-wide state vector in period t: (k_i, z_i)
- Consider $T \to \infty$
- Definition: a dynamic stochastic general equilibrium is time-invariant state-contingent price functions $w(k_{ii}, z_i)$, $r^k(k_{ii}, z_i)$ and state-contingent consumption, labor, and (one-period-ahead) capital decision rules $c(k_{ii}, z_i)$, $n(k_{ii}, z_i)$, and $k(k_{ii}, z_i)$ that jointly satisfy the following:

September 6, 2011

37

Macro Fundamentals

DYNAMIC GENERAL EQUILIBRIUM

- Economy-wide state vector in period t: (k_i, z_i)
- □ Consider $T \to \infty$
- Definition: a dynamic stochastic general equilibrium is time-invariant state-contingent price functions $w(k_{ii}, z_{i})$, $r^{k}(k_{ii}, z_{i})$ and state-contingent consumption, labor, and (one-period-ahead) capital decision rules $c(k_{ii}, z_{i})$, $n(k_{ii}, z_{i})$, and $k(k_{ii}, z_{i})$ that jointly satisfy the following:
 - 1. (Consumer optimality) Given $w(k_{ij},z_{i})$, $r^{k}(k_{ij},z_{i})$, the functions $c(k_{ij},z_{i})$, $n(k_{ij},z_{i})$, and $k(k_{ij},z_{i})$ solve the Euler equation (replaced by TVC as $T\to\infty$), labor supply function, and flow budget constraint of the representative consumer
 - 2. (Firm optimality) Given $w(k_{il}\ z_l),\ r^k(k_{il}\ z_l)$, the function $n(k_{il}\ z_l)$ satisfies the labor demand function and k_l satisfies the capital demand function
 - 3. (Markets clear)
 - ☐ Labor-market clearing

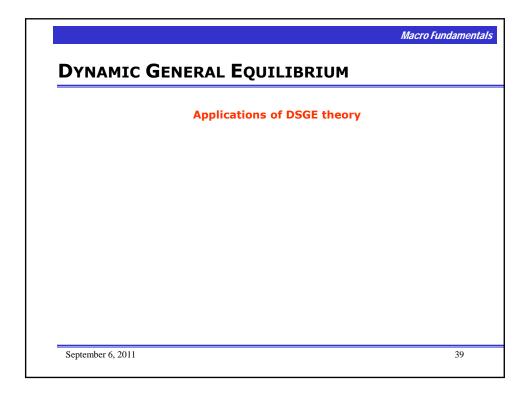
 $n(k_t; z_t) \equiv n^{D_t} = n^{S_t}, \forall t$

- Capital-market clearing
- $k_t \equiv k^D_t = k^S_t, \forall t$
- ☐ Goods market clearing

 $c(k_t; z_t) + k(k_t; z_t) - (\mathbf{1} - \delta)k_t = z_t \cdot f(k_t, n(k_t; z_t)), \forall \mathbf{t}$

given the initial capital stock k_0 and (Markov) transition process for $z_t \rightarrow z_{t+1}$

September 6, 2011



DYNAMIC GENERAL EQUILIBRIUM Applications of DSGE theory EVERYWHERE IN MACROECONOMICS (and related fields)