

	An economic model is a measuring device
	If model makes "believable" predictions along some important dimensior (i.e., "matches some key data")
	then maybe its predictions are "believable" along the novel dimensions the model
	Getting some "partial derivatives" of the model in known directions correct
	may build credibility that its "partial derivatives" in novel directions are least not grossly incorrect
Sej	stember 15, 2011 3

	Introductio
CA	LIBRATION – PHILOSOPHY
	An economic model is a measuring device
	If model makes "believable" predictions along some important dimensions (i.e., "matches some key data")
	then maybe its predictions are "believable" along the novel dimensions o the model
	Getting some "partial derivatives" of the model in known directions correct
	may build credibility that its "partial derivatives" in novel directions are a least not grossly incorrect
	Make model match some data of interest - often long-run (i.e., time- averaged data) growth facts
	Preferably well-accepted "stylized facts"
	Solow growth model in the background
	Natural candidate: Kaldor growth facts
	Calibration vs. Estimation

CA	LIBRATION OF BASELINE RBC MODEL
	Must take a stand on three (related) points Image: Which data do we want model to match? (even constructing data is challenging.) Image: Functional forms (utility, production) Image: Parameter values
	 Choose functional forms consistent with "Kaldor-plus facts" (K1) Capital income share and labor income share of GDP are stationary (K2) All real quantity variables grow at same rate in the long run (K3) Real interest rate is stationary (K4) Hours per worker are stationary (K5) (K2) requires trend productivity to be labor-augmenting (Phelps 1966)
	Often start with RBC model that abstracts from long-run growth
	But "true" calibration begins with model featuring only long-run growth Puts restrictions on instantaneous utility and production forms Use (K1)-(K5) to obtain these restrictions
	Richer models: more calibration targets and/or treating data differently Monopoly markups (e.g., Dixit-Stiglitz and sticky price models) Probability of finding a job (e.g., labor search models) Durable consumption vs. non-durable consumption

		-	Cali	ibration of RBC Model with Growth
	Absent shocks,	WITH GRO	WTH erministic rate γ	
	Planner problen	n/perfect compet	ition	Trend productivity is labor-
	$\max E_0 \sum_{t=0}^{\infty} b^t u(C_t, n_t)$	subject to	ţ	augmenting (Harrod-neutral) (Makes use of fact (K5))
Red indica	t=0	$C_t + K_{t+1} - (1 - \delta)K_t =$	$= z_t F(\mathbf{K}_t, n_t \mathbf{X}_t)$	Flow resource constraint
oarameter when detr	rs that will be modified rending the model	$X_{\iota} = \gamma X_{\iota-1},$	$\gamma \ge 1$	Evolution of deterministic
Sep	tember 15, 2011			7

	BC MODEL	WITH GROV	NTH		
	Absent shocks,	TFP grows at deter	rministic rate y	/	
	Planner proble	m/perfect competit	ion	Trend productivity is labor-	
	$\max E_0 \sum_{i=0}^{\infty} b^i u(C_i, n_i)$	subject to	↓ ·	augmenting (Harrod-neutral) (Makes use of fact (K5))	
d indica	ates variables or	$C_t + K_{t+1} - (1 - \delta)K_t = z$	$E_t F(\mathbf{K}_t, n_t \mathbf{X}_t)$	Flow resource constraint	
ramete nen det	rs that will be modified rending the model	$X_{t} = \gamma X_{t-1},$	$\gamma \ge 1$	Evolution of deterministic component of productivity	
	given stochastic p	process for evolution o	f z _t and (K ₀ , z ₀ , X	(0)	
	Suppose $z_t = 1$	always, so only det	erministic gro	wth	
	Deterministic dynamics of $(C_t, K_{t+1}, n_t, X_{t+1})$ governed by				
	(1)	$-\frac{u_n(C_t,n_t)}{u_c(C_t,n_t)} = X_t$	$F_2(K_t, n_t X_t)$	Labor supply function (aka consumption-labor optimality)	
	(2)	$\frac{u_C(C_t, n_t)}{bu_C(C_{t+1}, n_{t+1})} = F_1(K_{t+1})$	$(n_{t+1}X_{t+1}) + 1 - \delta$	Capital supply function (aka consumption-savings optimali	
	(3)	$C_t + K_{t+1} - (1-\delta)K_t$	$=F(K_t,n_tX_t)$		

Steady state (c,n,k) solves (1), (2), (3)
A dynamic phenomenon! Not static! Economy is moving exactly along its long-run (i.e., deterministic) growth path Balanced growth path
Scale of absolute quantity outcomes within model is meaningless □ What does, e.g., \overline{c} =1.56 mean?

Util	ity parameters
	$u(c_i, n_i) = \begin{cases} \frac{\left[c_i v(n_i)\right]^{1-\sigma} - 1}{1-\sigma} & \text{if } \sigma > 0, \ \sigma \neq 1 \end{cases}$
	$(\ln c_t + v(n_t))$ if $\sigma = 1$
Dat □ □	a: IES is around unity(?) or lower Implies $\sigma > 1$ (Recall: IES = $1/\sigma$ for time-separable CRRA utility) $\sigma = 1$ a conventional value
Lab	or subutility
	Common form $v(n) = -\frac{\psi}{1+1/\eta} n^{1+1/\eta}$
	η measures Frisch elasticity of labor supply (use C-L optimality condition)
	Calibrate $\boldsymbol{\Psi}$ to hit $\overline{n} \approx 0.3$
-	Empirical evidence on Frisch elasticity?

	Calibration of RBC Model: Typical Approac
BA	SELINE RBC MODEL
	Labor supply elasticity "controversial"
	Micro evidence: very low – η (substantially) smaller than one Macro evidence: very high – η (substantially) larger than one
	"Tension" between macro and micro evidence not useful way to frame the "controversy"
	Micro studies pick up intensive margin of labor supply Macro studies pick up (mostly) extensive margin of labor supply And other frictions in allocation of workers to jobs
	Chetty (2010): uses both macro and micro evidence to put bounds on labor supply elasticity
	Common in DSGE models: $\eta > 1$
Sep	tember 15, 2011 23

Exogenous process for TFP (deviations from long-run trend productivity)
$\ln z_{t+1} = (1 - \rho_z) \ln \overline{z} + \rho_z \ln z_t + \varepsilon_{t+1}$
$\mathcal{E}_{t+1} \sim \mathrm{iid} N(0, \sigma_z^2)$
Normalize $\overline{z} = 1$ Only governs absolute scale of model, which is arbitraryWhat does, e.g., $\overline{c} = 1.56$ mean?
Construct time-series for <i>z_t</i> using Data on labor, (detrended) capital, and (detrended) output
AR(1) estimation Quarterly frequency
$\Rightarrow \rho_{z} = 0.95$ and $\sigma_{z} = 0.006$

