LABOR MATCHING MODELS: BASIC DSGE IMPLEMENTATION

OCTOBER 15, 2013

- **Subject to (perceived) law of motion for firm's employment stock**
- Baseline model
 - **Shut down intensive margin:** $h_t = 1$
 - $\Box \quad \text{Linear posting costs: } g(v) = \gamma v$
 - **D** Firm production function: $y_t = z_t * n_t$
 - Wage-setting (process) taken as given when posting vacancies

Dynamic firm profit-maximization problem

$$\max_{v_t, n_{t+1}^f} \left[\sum_{t=0}^{\infty} \Xi_{t|0} \left(z_t n_t^f - w_t n_t^f - \gamma v_t \right) \right]$$

s.t. $n_{t+1}^f = (1 - \rho^x) n_t^f + v_t k^f (\theta_t)$

Perceived law of motion for evolution of employment stock

Number of existing jobs that do not end: p^x exogenous separation rate, but can also endogenize

Each vacancy has probability $k^{f}(\theta)$ of attracting a prospective employee: depends on a *market* variable, θ , so taken as given

FOCs with respect to $v_{t'}$ n_{t+1}

$$-\gamma + \mu_t k^f(\theta_t) = 0$$

$$-\mu_t + E_t \left\{ \Xi_{t+1|t} \left(z_{t+1} - w_{t+1} + (1 - \rho^x) \mu_{t+1} \right) \right\} = 0$$

$$\downarrow \quad \text{Combine}$$

Vacancy posting condition (aka job creation condition)

$$\gamma = k^{f}(\theta_{t})E_{t}\left\{\Xi_{t+1|t}\left(z_{t+1} - w_{t+1} + \frac{(1 - \rho^{x})\gamma}{k^{f}(\theta_{t+1})}\right)\right\}$$

 γ/k^{f} is capital value of an existing employee – because one *less* worker firm has to find in the future

EMPLOYEES ARE ASSETS

Cost of posting a vacancy

Expected benefit of posting a vacancy

= (probability of attracting a worker) x (expected future benefit of an additional worker)

= marginal output – wage payment + expected asset value of an additional worker

Vacancy posting condition (aka job creation condition)

$$\gamma = k^{f}(\theta_{t})E_{t}\left\{\Xi_{t+1|t}\left(z_{t+1} - w_{t+1} + \frac{(1 - \rho^{x})\gamma}{k^{f}(\theta_{t+1})}\right)\right\}$$

 γ/k^{f} is capital value of an existing employee – because one *less* worker firm has to find in the future

EMPLOYEES ARE ASSETS

Cost of posting a vacancy

Expected benefit of posting a vacancy = (probability of attracting a worker) x (expected future benefit of an additional worker)

> = marginal output – wage payment + expected asset value of an additional worker

Vacancy-posting is a type of investment decision

- □ Intertemporal dimension makes discount factor potentially important
 - Makes general equilibrium effects potentially important

Two prices affect posting decision (aside from intertemporal price)

- □ (Future) wage
- Matching probability (loosely interpret probabilities as prices) which depends on the market variable θ

HOUSEHOLD PROBLEM

Dynamic household utility-maximization problem

- A continuum [0, 1] of households (a standard assumption)
- A continuum [0, 1] of atomistic individuals live in each household
- Thus representative household has a continuum of "family members"

$$\max_{c_t, a_t} \left[E_0 \sum_{t=0}^{\infty} \beta^t u(c_t) \right]$$
S.t. $c_t + a_t = n_t w_t h_t + (1 - n_t)b + R_t a_{t-1}$
An (arbitrary) asset to make pricing interest rates explicit
Wage (-setting process) taken as given by household

Wage (-setting process) taken as given by household

Measure 1-n_t of family members receive unemployment benefits and/or engaged in home

Measure n labor inco (and recall we've normalized h = 1) production

HOUSEHOLD PROBLEM

Dynamic household utility-maximization problem

- A continuum [0, 1] of households (a standard assumption)
- A continuum [0, 1] of atomistic individuals live in each household
- □ Thus representative household has a continuum of "family members"

WAGE BARGAINING

Generalized) Nash Bargaining

$$\max_{w_t} \left(\mathbf{W}(w_t) - \mathbf{U}(w_t) \right)^{\eta} \left(\mathbf{J}(w_t) - \mathbf{V}(w_t) \right)^{1-\eta}$$

Bargaining over how to divide the surplus

Net payoff to an individual/household of agreeing to wage *w* and beginning production

Net payoff to a firm of agreeing to wage *w* and beginning production

□ Value equations

- W: value to (representative) household of having one additional member employed
- U: value to (representative) household of having one additional member unemployed and searching for work
- J: value to (representative) firm of having one additional employee
- □ V: value to (representative) firm of having a vacancy that goes unfilled
 - **Free entry in vacancy-posting** \rightarrow *V* = 0
- Define W and U in terms of household problem
 - i.e., based on envelope conditions of household value function

WAGE BARGAINING

Generalized) Nash Bargaining

$$\max_{w_t} \left(\mathbf{W}(w_t) - \mathbf{U}(w_t) \right)^{\eta} \left(\mathbf{J}(w_t) - \mathbf{V}(w_t) \right)^{1-\eta}$$

Bargaining over how to divide the surplus

Net payoff to an individual/household of agreeing to wage *w* and beginning production

Net payoff to a firm of agreeing to wage *w* and beginning production

The Nash surplus-sharing rule

$$\eta \Big(\mathbf{W}'(w_t) - \mathbf{U}'(w_t) \Big) \mathbf{J}(w_t) = (1 - \eta) (-\mathbf{J}'(w_t)) \Big(\mathbf{W}(w_t) - \mathbf{U}(w_t) \Big) \quad \text{(FOC with respect to } w_t)$$

- Present in any model with Nash bargaining
 - □ (Most) labor matching models
 - □ (Most) monetary search models
 - D Political bargaining games (Albanesi 2007 JME)

$\square \qquad \text{Must specify value equations } W(.), U(.), J(.)$

VALUE EQUATIONS

Individual/household value equations (constructed from household problem)

Each searching individual has probability $k^h(\theta)$ of finding a job opening: depends on a *market* variable, θ , so taken as given

$$\mathbf{W}(w_t) = w_t + E_t \left\{ \Xi_{t+1|t} \left[(1 - \rho^x) \mathbf{W}(w_{t+1}) + \rho^x \mathbf{U}(w_{t+1}) \right] \right\}$$

Value to household of having the marginal individual employed

Contemporaneous return is wage

Expected future return takes into account transition probabilities

$$\mathbf{U}(w_{t}) = b + E_{t} \left\{ \Xi_{t+\psi} \left[k^{h}(\theta_{t}) \mathbf{W}(w_{t+1}) + (1 - k^{h}(\theta_{t})) \mathbf{U}(w_{t+1}) \right] \right\}$$

Value to household of having the marginal individual unemployed and searching

Contemporaneous return is unemployment benefit/home production

Firm value equation

Expected future return takes into account transition probabilities

Value to firm of the marginal employee

 $\mathbf{J}(w_t) = z_t - w_t + E_t \left\{ \Xi_{t+\psi} (1 - \rho^x) \mathbf{J}(w_{t+1}) \right\}$

October 15, 2013

WAGE BARGAINING

The Nash surplus-sharing rule

$$\eta \Big(\mathbf{W}'(w_t) - \mathbf{U}'(w_t) \Big) \mathbf{J}(w_t) = (1 - \eta) (-\mathbf{J}'(w_t)) \Big(\mathbf{W}(w_t) - \mathbf{U}(w_t) \Big) \quad \text{(FOC with respect to } w_t)$$

Insert marginal values

Using definitions of W, U,

and J_{i} the job-creation

$$\eta \mathbf{J}(w_t) = (1 - \eta) \Big(\mathbf{W}(w_t) - \mathbf{U}(w_t) \Big)$$

Firm's surplus J a constant fraction of household's surplus W - U

NOTE: NOT a general property of Nash bargaining; here due to the linearity of W, U, and Jwith respect to wage condition, and some algebra

$$w_{t} = \eta \left[z_{t} + \gamma \theta_{t} \right] + (1 - \eta)b$$

Contemporaneous marginal output...

...and a term that captures the social savings on future posting costs if match continues

Bargained wage a convex combination of gains from consummating the match and the gains from walking away from the match

NOTE: With CRS matching function,

 $\theta = k^{h}(\theta)/k^{f}(\theta)$

LABOR MARKET MATCHING

□ Aggregate matching function displays CRS

 $m(u_t,v_t)$

 $u_t = 1 - n_t$ is measure of individuals searching for work

LABOR MARKET MATCHING

Aggregate matching function displays CRS

 $m(u_t,v_t)$

 $u_t = 1 - n_t$ is measure of individuals searching for work

For any given individual vacancy or individual (partial equilibrium), matching probabilities depend only on v/u

NOTE: With CRS matching function,

 $\theta = k^h(\theta)/k^f(\theta)$

In matching models, θ is the key driving force of efficiency and therefore optimal policy prescriptions (Hosios 1990 *ReStud* the key reference) $\frac{m(u_t, v_t)}{v_t} = m\left(\frac{u_t}{v_t}, 1\right) = m\left(\theta_t^{-1}, 1\right) \equiv k^f(\theta_t)$ Probability a given vacancy/job posting attracts a worker $m(u_t, v_t) = \left(1, v_t\right) = \left(1, 0\right) = k^f(\theta_t)$ Probability a given individual

$$\frac{m(u_t, v_t)}{u_t} = m\left(1, \frac{v_t}{u_t}\right) = m\left(1, \theta_t\right) \equiv k^h(\theta_t) \quad \begin{array}{l} \text{Probability a given} \\ \text{finds a job opening} \end{array}$$

 $\theta_t \equiv \frac{v_t}{u_t}$

<u>Market tightness:</u> measures relative number of traders on opposite sides of market

- Market tightness an allocational signal
 - Because matching probabilities depend on it
 - e.g., the higher (lower) is *v*/*u*, the easier (harder) it is for a given individual to find a job opening

LABOR-MARKET EQUILIBRIUM

□ Aggregate law of motion of employment

$$N_{t+1} = (1 - \rho^x) N_t + m(u_t, v_t)$$

Flow equilibrium conditions (an accounting identity...)

$$m(u_t, v_t) = u_t k^h(\theta_t) = v_t k^f(\theta_t)$$

Vacancy-posting (aka job-creation) condition

$$\gamma = k^{f}(\theta_{t})E_{t}\left\{\Xi_{t+1|t}\left(z_{t+1} - w_{t+1} + \frac{(1 - \rho^{x})\gamma}{k^{f}(\theta_{t+1})}\right)\right\}$$

Wage determination (Nash bargaining)

$$w_t = \eta \left[z_t + \gamma \theta_t \right] + (1 - \eta) b$$

- Basic labor-theory literature: impose ss on these and analyze, do comparative statics, etc. (exogenous real interest rate)
 - D Pissarides Chapter 1, RSW 2005 JEL

GENERAL EQUILIBRIUM

- Aggregate law of motion for employment
- Vacancy-posting (aka job-creation) condition
- Wage determination

The labor market equilibrium (*partial* equilibrium from the perspective of the entire environment)

Consumption-savings optimality condition (endogenizes real interest rate)

$$1 = R_t E_t \left\{ \frac{\beta u'(c_{t+1})}{u'(c_t)} \right\}$$

□ Aggregate resource constraint

Often interpreted as the output of a home production sector – only the unemployed produce in the home sector

 $c_t + g_t + \gamma v_t = z_t N_t h_t + (1 - N_t) b$

Vacancy posting costs and "outside option" are real uses of resources

Exogenous LOMs for any driving processes (TFP, etc)

STEADY STATE OF LABOR MARKET

Imposing deterministic steady state on labor-market equilibrium conditions

$$1 - u = (1 - \rho^{x})(1 - u) + m(u, v)$$

job-creation curve

(using N = 1 - u)

w negatively and nonlinearly related to θ (given CRS matching function)

(3)

(1

(2)

 $w = \eta \left[z + \gamma \theta \right] + (1 - \eta) b$

wage curve

θ

 $\gamma = \beta k^{f}(\theta) \left(z - w + \frac{(1 - \rho^{x})\gamma}{k^{f}(\theta)} \right)$

w positively and linearly related to $\boldsymbol{\theta}$

"Labor supply curve" and "labor demand curve" replaced by "wage curve" and "job-creation curve"

STEADY STATE OF LABOR MARKET

Imposing deterministic steady state on labor-market equilibrium conditions $u = \frac{\rho^{x} + m(u, v)}{\rho^{x}}$ $\gamma = \beta k^{f} \left(\frac{v}{u}\right) \left(z - w + \frac{(1 - \rho^{x})\gamma}{k^{f} \left(\frac{v}{u}\right)}\right)$

(2)

(1)

For a given (w, θ) , v and u negatively related (given CRS matching function)

For a given (w, θ) , v and u positively related (given CRS matching function)

STEADY STATE OF LABOR MARKET

Labor-market equilibrium is (w, u, θ) satisfying (1), (2), (3)

Comparative statics

- □ A rise in *b*...
 - □ …raises w
 - \Box ...lowers θ
 - \Box ...lowers *v* and raises *u*
- $\Box \quad \text{A fall in } \boldsymbol{\beta} \text{ (or a rise in } \boldsymbol{\rho}^{x} \text{)...}$
 - \Box ...lowers *w*
 - \Box ...lowers θ
 - □ …raises u
 - ...ambiguous effect on v

Higher value (ue benefit) of unemployment requires a higher wage to induce individuals to work, which reduces firm incentives to create jobs

Higher real rate and/or faster job separations (i.e., "faster depreciation of employment stock") makes posting vacancies (FOR FIXED *u*) less attractive for firms (both erode firm profits)

- □ See Pissarides Chapter 1 and RSW (2005 *JEL*) for more
- Next: dynamic stochastic partial equilibrium (Shimer 2005 AER, Hall 2005 AER, Hagedorn and Manovskii 2008 AER)

October 15, 2013