LABOR SEARCH MODELS: PARTIAL-EQUILIBRIUM DYNAMICS

OCTOBER 15, 2013

LABOR-MARKET EQUILIBRIUM

□ Aggregate law of motion of employment

$$N_{t+1} = (1 - \rho^{x})N_{t} + m(u_{t}, v_{t})$$

□ Flow equilibrium conditions (an accounting identity...)

$$m(u_t, v_t) = u_t k^h(\theta_t) = v_t k^f(\theta_t)$$

Vacancy-posting (aka job-creation) condition

$$\gamma = k^{f}(\theta_{t})E_{t}\left\{\Xi_{t+1|t}\left(z_{t+1} - w_{t+1} + \frac{(1 - \rho^{x})\gamma}{k^{f}(\theta_{t+1})}\right)\right\}$$

Does a good job explaining long-run (steady-state) phenomena

□ Wage determination

$$w_t = \eta \left[z_t + \gamma \theta_t \right] + (1 - \eta) b$$

- Shimer (2005) and Hall (2005): analyze the stochastic dynamics of the labor market equilibrium
 - **Not** general equilibrium dynamics

BASIC ISSUES AND RESULTS

- Shouldn't a model that does well at explaining long-run phenomena also be expected to do reasonably well at explaining cyclical phenomena? (should it?....)
- □ Labor search model's key endogenous variables
 - **Unemployment** u_t (equivalently, $N_t = 1 u_t$)
 - \Box Vacancies v_t
 - \Box Labor-market tightness $\boldsymbol{\theta}_t$
- Main Conclusion: model's predicted volatility in (u_t, v_t, θ_t) far lower than empirically-observed volatility
- Main Model Shortcoming: the wage-setting process (i.e., assumption of Nash bargaining)
 - □ Exogenous rise in productivity is nearly-fully absorbed by a rise in the wage → virtually no change in firms' incentives to post vacancies
 - □ Vacancy-posting the key economic margin of basic labor search model

EMPIRICAL FACTS

□ Basic cyclical labor-market facts

<u>Data Sources:</u> CPS, JOLTS, and	Data displays a cyclical Beveridge Curve Table 1—Summary Statis			ical Statistics, Qu	Labor-market Worker matching tightness θ rate $k^{h}(\theta)$ STICS, QUARTERLY U.S. DATA, 1951–2003			Extremely high correlation consistent with basic labor-matching model (in which k ^h depends on only θ)	
Conference Board			и	υ	ปน	f	s	р	
board	Standard deviation Quarterly autocorrelation	on	0.190 0.936	0.202	0.382	0.118 0.908	0.075 0.733	0.020 0.878	
	Correlation matrix	น บ/น f s p	1 	-0.894 	-0.971 0.975 1 	-0.949 0.897 0.948 1	0.709 -0.684 -0.715 -0.574 1	-0.408 0.364 0.396 -0.524 1	

- **Estimated matching function elasticity** $m(u_t, v_t) = u_t^{\alpha} v_t^{1-\alpha}$: $\alpha = 0.72$
- Question: How well can stochastic dynamic (partial-equilibrium) labor-search model match key labor-market business cycle facts?

MODEL DETAILS

Exogenous processes

- □ Labor productivity, z
- **Separation rate**, $\boldsymbol{\rho}^{\boldsymbol{x}}$
- ☐ (Markov processes, continuous time → can re-cast as AR(1)'s in discrete time)

Calibration

Accounting profit *z* – *w* each period

- Mean productivity z = 1 (normalization)
 - □ Implies real wage < *z* because of posting costs
- **Worker Nash bargaining power** $\eta = 0.72$ (= α)
 - □ Satisfies Hosios (1990 *ReStud*) condition for search efficiency
- **D** Mean quarterly separation rate $\rho^x = 0.1$
- **Unemployment benefit** b = 0.4
 - Replacement rate about 40 percent of labor income
 - But also measures flow value of leisure/home production
 - □ A critical parameter (Hagedorn and Manovskii (2008))

MODEL SIMULATION RESULTS

Productivity shocks alone

Add displays a systical		All much lower than the data							
everidge Curve	cai	TABLE 3—LABOR PRODUCT/VITY SHOCKS							
		u	υ	ง/น	f	р			
Standard deviation	$\overline{}$	0.009	0.027	0.035	0.010	0.020			
		(0.001)	(0.004)	(0.005)	(0.001)	(0.003)			
Quarterly autocorrelation		0.939	0.835	0.878	0.878	0.878			
		(0.018)	(0.045)	(0.035)	(0.035)	(0.035)			
	и	1	-0.927	-0.958	-0.958	-0.958			
			(0.020)	(0.012)	(0.012)	(0.012)			
	υ	_	1	0.996	0.996	0.995			
				(0.001)	(0.001)	(0.001)			
Correlation matrix	ปน	_	_	1	1.000	0.999			
					(0.000)	(0.001)			
	f	_			1	0.999			
						(0.001)			
	р	—	—	—	—	1			

MODEL SIMULATION RESULTS

Separation-rate shocks alone

Andel fails to display a		All much lower than the data							
yclical Beveridge Cu	ve	TABLE 4—SEPARATION RATE SHOCKS							
		u	υ	ปน	f	S			
Standard deviation		0.065	0.059	0.006	0.002	0.075			
		(0.007)	(0.006)	(0.001)	(0.000)	(0.007)			
Quarterly autocorrelation		0.864	0.862	0.732	0.732	0.733			
		(0.026)	(0.026)	(0.048)	(0.048)	(0.048)			
	и	1	0.999	-0.906	-0.906	0.908			
			(0.000)	(0.017)	(0.017)	(0.017)			
	υ	_	1	-0.887	-0.887	0.888			
				(0.020)	(0.020)	(0.021)			
Correlation matrix	ปน	_	_	1	1.000	-0.999			
					(0.000)	(0.000)			
	f	_	_	_	1	-0.999			
						(0.000)			
	S	—	—	_		1			

Proceeds to dismiss fluctuations in separation rate

□ A point of controversy – see Fujita and Ramey (2007)

MODEL MECHANISM(?)

Consider a single firm's vacancy-posting decision

$$\gamma = k^{f}(\theta_{t})E_{t}\left\{\Xi_{t+1|t}\left(z_{t+1} - w_{t+1} + \frac{(1 - \rho^{x})\gamma}{k^{f}(\theta_{t+1})}\right)\right\}$$

Flow profits, = pr_{t+1}

□ Interpretation of Shimer (2005) result

- Wages absorb too much of any change in productivity
- \neg → not much change in firms' vacancy posting incentives
- $\Box \rightarrow$ (in equilibrium) not much change in θ
- □ → (in equilibrium) not much change in *u* (because $k^h(\theta)$ governs transitions into/out of jobs)
- **The Shimer Puzzle**
 - How to address the model shortcoming?
 - Not a criticism of the labor search structure per se a criticism of the wage-setting mechanism (Nash) used in the model

BEYOND THE BASIC MODEL

- ☐ Hall (2005): a "social norm" under which w doesn't change in response to cyclical fluctuations
 - Permissible as an equilibrium DUE TO the bargaining interval between z and b
 - NOT something rationalizable in a standard Walrasian view of labor market
 - □ Larger fraction of z shock passed on to change in $pr \rightarrow$ model does better at accounting for volatility in v, u, θ
- **DSGE** macro models that take on the Shimer Puzzle
 - □ Krause and Lubik (2005): job-to-job transitions
 - Gertler and Trigari (2009): "staggered (Calvo) Nash bargaining"
 - **Rotemberg (2006):** monopolistic competition and markup shocks
 - Acemoglu and Hawkins (2006): Shapley-value as model of bargaining
 - □ Krusell et al (2010 *ReStud*), Nakajima (2012 *IER*): heterogenous riskaverse households (hence no consumption insurance)
 - □ Weinke and Sveen (2007): New Keynesian sticky-price model
 - □ ...

BEYOND THE BASIC MODEL

- Pissarides (2009 Econometrica)
 - Wage stickiness NOT the answer
 - Empirically
 - □ Wages in new hires are very volatile over the business cycle
 - □ Wages in ongoing jobs much less volatile (i.e., "sticky")...
 - ...but irrelevant for the dynamics of the vacancy-creation condition of a matching model

Proposes model of decreasing marginal costs of posting vacancies

- (Technically, a model of fixed hiring costs and constant MC of posting)
- Rather than typical constant marginal cost of posting vacancies
- i.e., increasing returns recruiting/posting technology
- □ A type of amplification mechanism
- Micro-level evidence on finer distinctions of categories of "hiring costs"
 - □ Barron, Berger, and Black (1997) survey
 - More anecdotal evidence on "hiring standards" by Davis, Faberman, and Haltiwanger (2013 QJE)
 - Some ex-ante of a match, some ex-post of a match

MODEL MECHANISM

- Aggregate law of motion of employment $N_{t+1} = (1 - \rho^x)N_t + m(u_t, v_t)$
- Flow equilibrium conditions (an accounting identity...) $m(u_t, v_t) = u_t k^h(\theta_t) = v_t k^f(\theta_t)$
- □ Vacancy-posting (aka job-creation) condition

$$\gamma = k^{f}(\theta_{t})E_{t}\left\{\Xi_{t+1|t}\left(z_{t+1} - w_{t+1} + \frac{(1 - \rho^{x})\gamma}{k^{f}(\theta_{t+1})}\right)\right\}$$

□ Wage determination

$$w_t = \eta \left[\mathbf{z}_t + \gamma \theta_t \right] + (1 - \eta) \mathbf{b}$$

- HM's key insight: in basic RBC model, "gap" between social value of market work (z) and value of non-market activity (b) equals ZERO
 - So this ought to be the heart of the issue in a matching model, too...not the wage-determination mechanism <u>per se</u>

MODEL MECHANISM

- To gain intuition, solve analytically for steady state of labor market (i.e., Pissarides Chapter 1)
- Can show (HM 2008, p. 1695) steady state elasticity of labor market tightness to labor productivity is

$$\varepsilon_{\theta,z} = \frac{z}{z-b} \frac{\eta k^h(\theta) + (1-\beta(1-\rho^x))/\beta}{\eta k^h(\theta) + (1-\xi)(1-\beta(1-\rho^x))/\beta}$$

MODEL MECHANISM

- To gain intuition, solve analytically for steady state of labor market (i.e., Pissarides Chapter 1)
- Can show (HM 2008, p. 1695) steady state elasticity of labor market tightness to labor productivity is

$$\varepsilon_{\theta,z} = \frac{z}{z-b} \frac{\eta k^h(\theta) + (1-\beta(1-\rho^x))/\beta}{\eta k^h(\theta) + (1-\xi)(1-\beta(1-\rho^x))/\beta}$$

- Depends on many things....
- ...in particular, depends on the gap between social value of market work (z) and value of non-market activity (b)
- Shimer calibration of b = 0.4 (unemployment "benefit" 40% of the value of labor income) inconsistent with G.E. business cycle models in which indifference conditions are satisfied in equilibrium
- Steady-state intuition maybe a guide to dynamics? Cyclical fluctuations typically pretty linear

BEYOND THE BASIC MODEL

- Hagedorn and Manovskii (2008)
 - Use data on only vacancy posting costs, not broader "hiring costs"
 - Use data on elasticity of wages with respect to productivity
 - □ (Recall from basic RBC: quite low)
 - Consider effects of taxes (which affects the receipt of labor income by households)

Back out values of η (worker Nash bargaining weight) and *b* (flow value of unemployment)

η = 0.05

b = 0.95

(much smaller than typical labor literature) (much larger than typical labor literature)

Simulations of the			u	v	v/u	p
Hagedorn and Manovskii	Standard Dev	0.145	0.169	0.292	0.013	
data well	Quarterly Autocorre	elation	0.830	0.575	0.751	0.765
		u	1	-0.866	-0.966	-0.949
		v		1	0.966	0.946
	Correlation Matrix	v/u			1	0.981
		p				1

Table 4: Results from the Calibrated Model.

FULL MACRO MODELS

- **DSGE** macro models that take on the Shimer Puzzle
 - □ Krause and Lubik (2005): job-to-job transitions
 - Gertler and Trigari (2009): "staggered (Calvo) Nash bargaining"
 - **Rotemberg (2006):** monopolistic competition and markup shocks
 - Acemoglu and Hawkins (2006): Shapley-value as model of bargaining
 - Krusell et al (2010 *ReStud*), Nakajima (2012 *IER*): heterogenous riskaverse households (hence no consumption insurance)
 - □ Weinke and Sveen (2007): New Keynesian sticky-price model
 - □ ...
- Pre-Shimer: the effects of labor matching frictions on basic RBC model dynamics?
 - □ Andolfatto (1996 AER)
 - □ Merz (1995 *JME*)
 - den Haan, Ramey, Watson (2000 AER)