OPTIMAL FISCAL AND MONETARY POLICY WITH NOMINAL RIGIDITIES

DECEMBER 5, 2013

OUTLINE

- Basics of Ramsey optimal policy problem (the microeconomics)
- Applying the Ramsey framework to macroeconomic policy
- Modern benchmark Ramsey (monetary policy) results
 - Optimality of the Friedman Rule
 - Inflation very volatile and serially uncorrelated
 - Dynamic result: Fiscal Theory of the Price Level (FTPL) underpinnings
- How palatable is the strict Ramsey approach for monetary policy prescriptions?
- □ Nominal price rigidity in the Ramsey environment (SGU 2004 *JET*)
- Nominal wage rigidity in the Ramsey environment
 - Chugh (2006 *RED*): embedded in Walrasian labor markets
 - Arseneau and Chugh (2008 *JME*): embedded in labor markets with search and matching frictions

STICKY-PRICE RAMSEY MODELS

Flexible prices and wages

- Optimal inflation highly volatile makes nominal government debt state-contingent in real terms
- □ An insurance mechanism
- Schmitt-Grohe and Uribe (2004 *JET*) and Siu (2004 *JME*)
 - Pit insurance value of generating state-contingent debt vs. deadweight costs associated with nominal price rigidity
 - A quantitative test
- Key elements of SGU model
 - Standard NK separation into intermediate and final goods
 - Menu costs of nominal price adjustment

Can map Calvo adjustment probability into parameter ψ

Every firm CAN adjust price every period. Quadratic cost limits SIZE of price adjustments.

- □ A real resource cost (i.e., appears in economy-wide resource constraint)
- Rotemberg (1982 JPE)
- □ Alternative to Calvo and Taylor

December 5, 2013

SGU MODEL

Intermediate firm profit-maximization problem

$$\max_{P_{it}} \left\{ \left(P_{it} - P_{t}mc_{t} \right) y_{it} - \frac{\psi}{2} \left(\frac{P_{it}}{P_{it-1}} - 1 \right)^{2} P_{t} + E_{t} \left[\Xi_{t+1|t} \left[\left(P_{it+1} - P_{t+1}mc_{t+1} \right) y_{it+1} - \frac{\psi}{2} \left(\frac{P_{it+1}}{P_{it}} - 1 \right)^{2} P_{t+1} \right] \right] \right\}$$

s.t. $y_{it} = \left[\frac{P_{it}}{P_{t}} \right]^{-\varepsilon} y_{t}$

FOC (in symmetric equilibrium) – no price dispersion in Rotemberg

$$\left[(1-\varepsilon) + \varepsilon mc_t \right] y_t - \psi(\pi_t - 1)\pi_t + \psi E_t \left[\Xi_{t+1|t}(\pi_{t+1} - 1)\pi_{t+1} \right] = 0 \qquad \frac{\text{New Keynesian}}{\text{Phillips Curve}}$$

- Money demand motivated by transactions cost function
- Formulation of Ramsey problem
 - Primal form: eliminate all prices/policies, solve for optimal allocations, then construct supporting prices/policies
- Puts additional restrictions on the time-path of the price level beyond that implied by the FTPL
- Dual form: optimize directly with respect to only policies
- PVIC is no longer the only Ramsey constraint (apart from resource constraint)
 - Because NK Phillips Curve imposes sequence of constraints on evolution of nominal *P*, which is the heart of the FTPL-esque Ramsey mechanism

STICKY-PRICE RAMSEY MODELS

Flexible prices/flexible wages: **Sticky** prices/flexible wages: (large) fluctuations in P_t not so (large) fluctuations in P_t quite costly...

costly...

STICKY-PRICE RAMSEY MODELS

- Friedman Rule not optimal in SGU model
 - **Due to absence of profit tax**
 - Positive nominal interest rate indirectly taxes monopoly rents, which are a "fixed factor" of production (hence non-distortionary)
 - **Ramsey framework useful in identifying rents**
 - Siu (JME 2004): allows profit tax and recovers optimality of Friedman Rule
- Inflation volatility dramatically lower than in flex-price model
 - Insurance value of ex-post (non-zero) inflation dominated by resource cost of non-zero inflation
 - **Supports "standard" New Keynesian prescription of stabilizing inflation**
- **Quantitative:** sticky-price distortion dominates
 - King and Wolman (1999) result: sticky-price distortion should be completely eliminated with zero inflation all the time absent any other distortions
 - □ Weber (2012 *JMCB*): product turnover (ala BGM 2012) makes steady state inflation > 0

A STICKY-WAGE RAMSEY MODEL

Renewed interest in sticky-wage models since EHL (2000) and CEE (2005)

Hypothesis: Nominal rigidity in wages alone may make Ramsey inflation stable

Conjectured Mechanism:

If efficient path of real wage is not very volatile \rightarrow any concern for stabilizing nominal wage inflation will translate into concern for stabilizing nominal price inflation

Because Ramsey government tries to come close to the *efficient* path of real wages (since the Ramsey government *does* care about efficiency...)

Via the equilibrium restriction

$$\frac{W_t}{W_{t-1}} = \frac{\pi_t^w}{\pi_t}$$

Growth of real wage = Nominal wage inflation Nominal price inflation

A STICKY-WAGE RAMSEY MODEL

- "Final labor" and "intermediate labor" (standard EHL)
 - Monopolistic competition in intermediate labor markets
 - Each household faces Rotemberg menu cost of changing its nominal wage
- Money demand motivated by cash/credit structure
- **Key equilibrium condition (and hence Ramsey constraint):** $\frac{W_t}{W_{t-1}} = \frac{\pi_t^w}{\pi_t}$ Non-trivial in sticky-wade models
- Formulation of Ramsey problem
 - PVIC again does not capture all equilibrium conditions
 - So formulate a problem hybrid between the primal and dual approaches

A STICKY-WAGE RAMSEY MODEL

LABOR MARKET RELATIONSHIPS?

Goodfriend and King (2001): "...potential allocative inefficiencies from [costly] setting of nominal wages are likely to be offset in the context of long-term employment relationships.." and "...unlikely to influence recommendations for policy."

How might policy prescriptions change when we model long-term labor market relationships?

In ongoing (i.e., not spot) relationships, "prices" (wages) may play a very different role than in neoclassical models – and may be determined by very different forces than neoclassical (i.e., supply and demand) market forces...

Is Walrasian-based view fundamentally the most natural way to think about labor markets?

(Or even some other markets?...)

A STICKY-WAGE RAMSEY MODEL II

Arseneau and Chugh (2008 JME) Model

□ Labor market with search and matching frictions

- Determines quantity of labor (a non-Walrasian allocation mechanism)
- Search frictions → when workers and firms do find each other, they have an incentive to remain together a long-term employment relationship
- □ Wage payment determined by Nash bargaining between individuals and firms
 - Determines price of labor (a non-Walrasian pricing mechanism)
 - **Bargaining over the nominal wage**
- □ Costly wage adjustment modeled using simple Rotemberg cost
 - Embedded inside wage bargaining problem
- □ Key equilibrium restriction (and hence Ramsey constraint):

$$\frac{W_t}{W_{t-1}} = \frac{\pi_t^w}{\pi_t}$$

- □ Money demand motivated by cash/credit structure
- Key Ramsey constraints: PVIC, wage Phillips Curve, vacancy-creation condition, Nash wage outcome (and standard Ramsey monetary constraints)

A STICKY-WAGE RAMSEY MODEL II

DYNAMICS OF *REAL* WAGE THE KEY

December 5, 2013

SUMMARY

- □ The Ramsey Monetary Model
 - A testing ground for frictions/features that make inflation stability an important goal of policy
- □ Which frictions are important?
 - □ Sticky prices? Clearly...
 - □ Sticky nominal wages?
 - Depends on underlying view of the labor market
 - Relative price distortions must stem from more deep-rooted reasons than ad-hoc "sticky prices"...
 - ...because (old and New) Keynesian intuition continues to ring true
 - Aruoba and Chugh (2010 JET): frictions underlying monetary exchange
 - Other (non-monetary) search frictions in goods markets? (in progress)
- Other Interesting Future Directions
 - Heterogeneity/*dynamic* redistributive effects of inflation
 - Political considerations: separate the fiscal and monetary authority?