# TAX SMOOTHING IN FRICTIONAL LABOR MARKETS

# **DECEMBER 10, 2013**

## **TAX SMOOTHING**



- Ramsey wants to keep these wedges constant
- Result and intuition depend on neoclassical view of labor markets
  - □ Labor tax is the only wedge  $\rightarrow$  tax-smoothing is wedge-smoothing
- Question: Is tax smoothing optimal from the point of view of the modern theory of frictional labor markets?

### TAX SMOOTHING

$$MRS_t = (1 - \tau_t^n) MPN_t \ \forall t$$

- Ramsey wants to keep these wedges constant
- **Result and intuition depend on neoclassical view of labor markets** 
  - □ Labor tax is the only wedge  $\rightarrow$  tax-smoothing is wedge-smoothing
- Question: Is tax smoothing optimal from the point of view of the modern theory of frictional labor markets?

## **TAX SMOOTHING**

In neoclassical view, MPN = MRT (between labor and consumption)

 $MRS_t = (1 - \tau_t^n) MRT_t \forall t$ 

Think in terms of transformation frontier in which every object can be viewed as either an input to or an output of the technology to which it is associated

- Ramsey wants to keep these wedges constant
- Result and intuition depend on neoclassical view of labor markets
  - □ Labor tax is the only wedge → tax-smoothing is wedge-smoothing
- Question: Is tax smoothing optimal from the point of view of the modern theory of frictional labor markets?

## LABOR FORCE PARTICIPATION

- □ Introduce endogenous labor supply (participation)
- Conventional empirical wisdom
  - □ Cyclical LFP fluctuations "small"
  - Basis for typically abstracting from participation in matching models
  - **U** Volatility of LFP relative to that of GDP  $\approx$  0.20



## **OVERVIEW OF MODEL**

- □ Infinitely-lived representative household, measure one of members
  - **Employed members**
  - Unemployed members
  - Members outside the labor force ("leisure")

Full consumption insurance – standard in DSGE labor search models

Incompleteness of government debt markets NOT driving our results (Aiyagari et al (2002 JPE))

- Exogenous stochastic government spending
  - Financed via labor income taxation and one-period real <u>state-contingent</u> debt
  - Government provides unemployment benefits
  - Government provides vacancy subsidies
    - □ For completeness of tax instruments (Ramsey issue)
- Labor market with matching frictions and wage-setting frictions
- Only an extensive labor margin, no intensive labor margin
- Timing: "instantaneous production"

### **OVERVIEW OF MODEL**



- Unemployed are the unsuccessful searchers:  $ue_t = (1-p_t)s_t$ 
  - $\square$   $p_t$  = probability an individual finds a job and begins working immediately

## HOUSEHOLD OPTIMIZATION

Maximize expected lifetime utility

$$\max_{\{c,n_t,s_t,b_t\}} E_0 \sum_{t=0}^{\infty} \beta^t \left[ u(c_t) - h\left((1 - p_t)s_t + n_t\right) \right]$$
  
disutility of employment +  
unsuccessful search  
$$c_t + b_t = n_t (1 - \tau_t^n) W_t + (1 - p_t) s_t \chi + R_t b_{t-1} + (1 - \tau^d) d_t$$
Flow budget constraint  
measure *n* earn after-  
tax wage income  
$$measure u = (1 - p) s_t \chi + R_t b_{t-1} + (1 - \tau^d) d_t$$
Flow budget constraint  
measure *u* e = (1 - p) s\_t receive ue benefit \chi  
(government financed)  
$$n_t = (1 - p) n_{t-1} + s_t p_t$$
Baseline analysis: set  $r^d = 1 \Rightarrow notext{ profit-taxation issues driving results}(exogenous) measure of pre-existing employmentrelationships terminateFOCs with respect  $c_t, n_t$   
structure the second second$ 

s.t.

## HOUSEHOLDS

Household LFP condition (think of as labor supply condition)

$$\frac{h'(lfp_t)}{u'(c_t)} = p_t \left[ (1 - \tau_t^n) w_t + (1 - \rho) E_t \left\{ \Xi_{t+1|t} \left( \frac{1 - p_{t+1}}{p_{t+1}} \right) \left( \frac{h'(lfp_{t+1})}{u'(c_{t+1})} - \chi \right) \right\} \right] + (1 - p_t) \chi$$

 $\square \qquad \text{MRS between } Ifp_t \text{ and } c_t = \text{expected payoff of searching}$ 

- **Unemployment benefit (with probability 1**  $p_t$ )
- After-tax wage + continuation value (with probability  $p_t$ )

To recover standard labor supply function (e.g., RBC)

1.  $\rho = 1$  (all employment relationships terminate at end of every period)

2. p = 1 (probability a searcher finds a job)

3.  $\chi = 0$  (no ue benefit because no notion of "ue")

$$\frac{h'(lfp_t)}{u'(c_t)} = (1 - \tau_t^n) w_t$$

## FIRMS

#### Production

- **Q** Requires a matched job-worker pair: posting cost  $\gamma$  per vacancy
- $\Box \quad \text{Individual job } i \text{ produces } y_{it} = z_t$
- **Aggregate output**  $y_t = n_t z_t$  (symmetry across jobs)



## LABOR MARKET

- $\Box \qquad \text{Labor-market tightness } \boldsymbol{\theta}_t = v_t / u_t$ 
  - Important aggregate variable in matching-based models
  - $\Box \qquad \text{Matching probabilities } p \text{ and } q \text{ depend only on } \theta \text{ given CRTS matching}$
  - Key statistic for matching efficiency
- □ Matching function  $m(s_t, v_t) = \psi s_t^{\zeta} v_t^{1-\zeta}$ □ LOM for aggregate employment  $n_t = (1-\rho)n_{t-1} + m(s_t, v_t)$
- □ Nash bargaining over wage payment solves



#### Model

## **GOVERNMENT AND RESOURCE FRONTIER**

- **Exogenous government spending financed via** 
  - Labor income tax
  - One-period state contingent real debt

 $\tau_{t}^{n} w_{t} n_{t} + b_{t} + \tau^{d} d_{t} = g_{t} + R_{t} b_{t-1} + (1 - p_{t}) s_{t} \chi + \tau_{t}^{s} \gamma v_{t}$ 

- **Government provides unemployment benefits** 
  - **Q** Rather than assuming  $\chi$  is "home production"
- Resource constraint

$$c_t + g_t + \gamma v_t = z_t n_t$$

- □ = govt budget constraint + hh budget constraint
- $\Box$  Assuming  $\chi$  is govt-financed allows it to drop out of resource constraint
  - Makes model more comparable to existing Ramsey models
- Precise nature of x (ue benefit? home production? value of leisure?) not typically specified in DSGE matching models
  - Our model articulates both ue benefit and value of leisure

## **PRIVATE-SECTOR EQUILIBRIUM**



Standard conditions in basic Ramsey models

December 10, 2013



### **MATCHING EFFICIENCY**

Social Planner

$$\max_{\{c,n_t,s_t,v_t\}} E_0 \sum_{t=0}^{\infty} \beta^t \left[ u(c_t) - h(lfp_t) \right]$$

s.t.

**Resource constraint** 

 $n_t = (1 - \rho)n_{t-1} + m(s_t, v_t)$ 

 $c_t + g_t + \gamma v_t = z_t n_t$ 

Aggregate LOM for total employment

## **MATCHING EFFICIENCY**

Social Planner

$$\max_{c,n_t,s_t,v_t\}} E_0 \sum_{t=0}^{\infty} \beta^t \left[ u(c_t) - h(lfp_t) \right]$$

s.t.

 $c_t + g_t + \gamma v_t = z_t n_t$ 

 $n_t = (1 - \rho)n_{t-1} + m(s_t, v_t)$ 

**Resource constraint** 

Aggregate LOM for total employment

FOCs (consider deterministic case)

$$\frac{h'(lfp_t)}{u'(c_t)} = \frac{\gamma m_s(s_t, v_t)}{m_v(s_t, v_t)}$$
$$= \gamma \theta_t \frac{\xi}{1 - \xi}$$

 $\frac{u'(c_t)}{\beta u'(c_{t+1})} = \frac{(1-\rho) \left(\frac{\gamma}{m_v(s_{t+1},v_{t+1})}\right) \left(1-m_s(s_{t+1},v_{t+1})\right)}{\nu}$  $\frac{\gamma}{m_v(s_t,v_t)}$ 

$$m_{v}(s_{t},v_{t})$$

$$v\theta_{t}\frac{\xi}{1-\xi}$$

**Static Efficiency Condition.** 

"Efficient Participation Condition"

Can instead derive directly off transformation frontier of model.

Intertemporal Efficiency Condition.

"Efficient Vacancies Condition"

Can instead derive directly off transformation frontier of model.

December 10, 2013

## MATCHING EFFICIENCY

**Efficiency characterized by** 



Static Efficiency Condition.

Can instead derive directly off transformation frontier of model.



- Hypothesis based on Ramsey theory: stabilizing or closing any wedges in THESE efficiency conditions is optimal
- **Contribution to understanding efficiency in DGE models with "entry" margins** 
  - IMRT in search-theoretic monetary models: Aruoba and Chugh (2010 JET)
  - IMRT in endogenous product variety framework: Chugh and Ghironi (2012)

## CALIBRATION

#### Baseline calibration

- So that exogenous policy (non-Ramsey) equilibrium broadly matches
   U.S. labor market fluctuations
- Preferences and key parameters

$$u(c_t) - h(lfp_t) = \ln c_t - \frac{\kappa}{1 + 1/t} lfp_t^{1 + 1/t}$$

- **D** Participation (labor supply) elasticity (i = 0.18)
- **Low worker bargaining power** ( $\eta$  = 0.05)
- □ High unemployment benefit (98% of real wage)

The two key parameters of HM calibration

- Rest of parameters, matching-related and otherwise, standard
  - $\Box \quad \boldsymbol{\beta} = 0.99$
  - $\Box \quad \boldsymbol{\rho} = 0.10$
  - $\Box \quad \boldsymbol{\xi} = 0.40$
  - □ AR(1) parameters for LOMs for TFP and government spending
  - Etc.

## **Dynamics**

|                                  |        | Ramsey      |                            | Exogenous Policy<br>Benchmark |  | Data 🚽 |                                                |
|----------------------------------|--------|-------------|----------------------------|-------------------------------|--|--------|------------------------------------------------|
|                                  |        | Calibration |                            | Calibration                   |  |        | ا<br>Gertler and Trigari<br>(2009 <i>JPE</i> ) |
|                                  |        | <u>HM</u>   | <u>0%</u><br>and<br>Hosios | <u>HM</u>                     |  |        |                                                |
| Labor Tax Rate                   | Mean   | 11%         |                            | 22%                           |  | 22%    |                                                |
|                                  | Rel SD | 5.6         |                            | 1.4                           |  | 1.4    |                                                |
| Market<br>tightness ( <b>0</b> ) | Rel SD | 1.1         |                            | 10.9                          |  | 11.3   |                                                |
| Vacancies                        | Rel SD | 1.3         |                            | 6.9                           |  | 6.3    |                                                |
| Unemployment                     | Rel SD | 1.4         |                            | 5.4                           |  | 5.2    |                                                |
| LFP                              | Rel SD | 0.13        |                            | 0.20                          |  | 0.20   |                                                |
| Real wage                        | Rel SD | 0.50        |                            | 0.28                          |  | 0.52   |                                                |
| Static wedge                     | SD (%) |             |                            |                               |  |        |                                                |
| Intertemporal wedge              | SD (%) |             |                            |                               |  |        |                                                |

#### **Dynamics**

- Ramsey fluctuations IDENTICAL to efficient fluctuations for ANY (η, χ) pair
  - □ In terms of fluctuations around a given steady state
  - **Given Steady-state levels of**  $(\tau^n, \tau^s)$  depend on  $(\eta, \chi)$  pair





#### **DYNAMICS**

- Ramsey fluctuations IDENTICAL to efficient fluctuations for ANY (η, χ) pair
  - □ In terms of fluctuations around a given steady state
  - **Given Steady-state levels of**  $(\tau^n, \tau^s)$  depend on  $(\eta, \chi)$  pair
- □ Interpretation: Ramsey government always ensures efficient labormarket fluctuations  $(v_t, s_t, \theta_t)$ 
  - **D** By appropriately adjusting  $(\tau^n, \tau^s)$  over the business cycle

## **Dynamics**

|                                  |        | Ramsey      |                            | Exogenous Policy<br>Benchmark |  | Data 🚽 |                                                |
|----------------------------------|--------|-------------|----------------------------|-------------------------------|--|--------|------------------------------------------------|
|                                  |        | Calibration |                            | Calibration                   |  |        | ا<br>Gertler and Trigari<br>(2009 <i>JPE</i> ) |
|                                  |        | <u>HM</u>   | <u>0%</u><br>and<br>Hosios | <u>HM</u>                     |  |        |                                                |
| Labor Tax Rate                   | Mean   | 11%         | 15%                        | 22%                           |  | 22%    |                                                |
|                                  | Rel SD | 5.6         | 0                          | 1.4                           |  | 1.4    |                                                |
| Market<br>tightness ( <b>0</b> ) | Rel SD | 1.1         | 1.1                        | 10.9                          |  | 11.3   |                                                |
| Vacancies                        | Rel SD | 1.3         | 1.3                        | 6.9                           |  | 6.3    |                                                |
| Unemployment                     | Rel SD | 1.4         | 1.4                        | 5.4                           |  | 5.2    |                                                |
| LFP                              | Rel SD | 0.13        | 0.13                       | 0.20                          |  | 0.20   |                                                |
| Real wage                        | Rel SD | 0.50        | 1.1                        | 0.28                          |  | 0.52   |                                                |
| Static wedge                     | SD (%) |             |                            |                               |  |        |                                                |
| Intertemporal wedge              | SD (%) |             |                            |                               |  |        |                                                |

#### **DYNAMICS**

- Ramsey fluctuations IDENTICAL to efficient fluctuations for ANY (η, χ) pair
  - □ In terms of fluctuations around a given steady state
  - **Given Steady-state levels of**  $(\tau^n, \tau^s)$  depend on  $(\eta, \chi)$  pair
- □ Interpretation: Ramsey government always ensures efficient labormarket fluctuations  $(v_t, s_t, \theta_t)$ 
  - **D** By appropriately adjusting  $(\tau^n, \tau^s)$  over the business cycle
- Wedge dynamics?
  - **Ramsey smooths both static wedge....**
  - □ …and intertemporal wedge

## **Dynamics**

|                                  |        | Ran         | nsey                       | Exogenous Policy<br>Benchmark |                            | Data 🖣 |                                           |
|----------------------------------|--------|-------------|----------------------------|-------------------------------|----------------------------|--------|-------------------------------------------|
|                                  |        | Calibration |                            | Calibration                   |                            |        | Gertler and Trigari<br>(2009 <i>JPE</i> ) |
|                                  |        | <u>HM</u>   | <u>0%</u><br>and<br>Hosios | <u>HM</u>                     | <u>0%</u><br>and<br>Hosios |        | , , ,                                     |
| Labor Tax Rate                   | Mean   | 11%         | 15%                        | 22%                           |                            | 22%    |                                           |
|                                  | Rel SD | 5.6         | 0                          | 1.4                           |                            | 1.4    |                                           |
| Market<br>tightness ( <b>0</b> ) | Rel SD | 1.1         | 1.1                        | 10.9                          |                            | 11.3   |                                           |
| Vacancies                        | Rel SD | 1.3         | 1.3                        | 6.9                           |                            | 6.3    |                                           |
| Unemployment                     | Rel SD | 1.4         | 1.4                        | 5.4                           |                            | 5.2    |                                           |
| LFP                              | Rel SD | 0.13        | 0.13                       | 0.20                          |                            | 0.20   |                                           |
| Real wage                        | Rel SD | 0.50        | 1.1                        | 0.28                          |                            | 0.52   |                                           |
| Static wedge                     | SD (%) | 0.08        | 0                          | 22.9                          | 0.66                       |        |                                           |
| Intertemporal wedge              | SD (%) | 0           | 0                          | 12.3                          | 0.63                       |        |                                           |

## STATIC AND INTERTEMPORAL CONDITIONS

Intertemporal ConditionEfficiency characterized by $\frac{h'(lfp_t)}{u'(c_t)} = \frac{\gamma m_s(s_t, v_t)}{m_v(s_t, v_t)}$  $\frac{u'(c_t)}{\beta u'(c_{t+1})} = \frac{(1-\rho)\left(\frac{\gamma}{m_v(s_{t+1}, v_{t+1})}\right)\left(1-m_s(s_{t+1}, v_{t+1})\right)}{\frac{\gamma}{m_v(s_t, v_t)} - z_t}$ 

Decentralized equilibrium conditions characterized by

$$\frac{h'(lfp_t)}{u'(c_t)} = \left[\frac{\chi(1-\xi)}{\gamma\cdot\xi\cdot\theta_t} + (1-\tau_t^n)(1-\tau_t^s)\frac{\eta(1-\xi)}{\xi(1-\eta)}\right]\gamma\theta_t\frac{\xi}{1-\xi}$$

(Too complicated to gain any immediate intuition – see Section 6 and Appendix D)

= wedge between static MRS<sub>t</sub> and static MRT<sub>t</sub>

To obtain zero static wedge in every period, need  $\tau^n = \tau^s = 0$  in every period,  $\eta = \xi$ ,  $\chi = 0$  To obtain zero intertemporal wedge in every period, need  $\tau^n = \tau^s = 0$  in every period,  $\eta = \xi$ ,  $\chi = 0$ 

### CONCLUSIONS

- Labor tax smoothing not optimal in DSGE search and matching model
  - Calibrated to match key labor market dynamics under exogenous tax policy
  - Rigid real wage (delivered through Nash-Hosios bargaining as benchmark) the important feature of the model
- But wedge smoothing IS optimal
  - Basic Ramsey theory
- **Ramsey fluctuations in allocations efficient regardless of calibration**
- Welfare-relevant notions of wedges
  - Developing matching-model concepts of efficiency and MRTs for use in virtually any matching application
- Could think of "labor wedge" as featuring both static and intertemporal dimensions
  - Use as framework to empirically measure labor wedges?