EFFICIENCY AND LABOR MARKET DYNAMICS IN A MODEL OF LABOR SELECTION

SANJAY K. CHUGH
BOSTON COLLEGE
KIEL INSTITUTE FOR THE WORLD ECONOMY

CHRISTIAN MERKL
FRIEDRICH-ALEXANDER-UNIVERSITÄT
ERLANGEN-NÜRNBERG
IZA INSTITUTE

FEDERAL RESERVE BOARD
JULY 17, 2014
MOTIVATION

- Goals of project
- Explain business-cycle volatility in unemployment and job-finding
- Using efficient allocations
 - (Avoid wage formation altogether…)
- Using costs of hiring distinct from vacancy posting costs
 - (Note: Efficient allocations in “baseline” search and matching framework will not get us there)
 - “Shimer puzzle”
METHODOLOGY

- Methodology of project
- Exploit cross-sectional heterogeneity amongst (potential) new hires’ characteristics
- Discipline with micro-economic data
- Micro-data about cross-sectional heterogeneity?
 - Person i-specific productivity difficult (impossible?) to measure (“How much can person i produce?”)
 - Wage data easily available
 - BUT our model intentionally avoids how wages are determined
 - (return to this point soon...)
- Our framework uses micro-level “match quality” data
 - Costs of “integrating” / “training” potential new hires
DATA

- **Empirics**

- **Cost of training / hiring**
 - Apply only in the first period of employment
 - As new workers learn the methods of their new firm

- **Incumbent workers incur zero training costs**

- **Real life examples of training costs**
 - Shadowing other workers to observe how job is performed
 - Understanding the culture of the firm
 - Computer setup and configurations
 - Etc...

- **Barron, Black, and Loewenstein (1989 *JLE*)**
 - Firm-level costs of interviewing/hiring/training/integrating new workers
 - Based on 1982 EOPP (Employment Opportunities Pilot Project)
 - “...workers of varying abilities are matched to positions with different training requirements.”
DATA

- Barron, Black, and Loewenstein (1989 *JLE*)
 - Firm-level costs of interviewing/hiring/training/integrating new workers
 - Based on 1982 EOPP (Employment Opportunities Pilot Project)

- Reports first moments and cross-sectional second moments

- (Any other evidence on cross-sectional second moments?...)

- 1982 EOPP data continues to be used in various applications
 - Different investment in match-specific capital for different education groups (Cairo and Cajner, 2013 WP)
 - Size of labor turnover costs (relevant for search and matching models) – e.g., Silva and Toledo (2009 *MD*)
 - Effects of training costs of firm-specific labor turnover (Dolfin 2006 *Applied Economics*)
MODEL

- **Main components**
 - Fixed cost γ^h of “training” each new hire (systematic component)
 - Idiosyncratic training cost for each new hire i

- **Total training cost for new worker i in period $t = \gamma^h + \varepsilon^i$**

 Idiosyncratic training/residual cost for new hire i

 $\varepsilon^i \sim$ iid $\ln N(0, \sigma^2_\varepsilon)$
DISTRIBUTION

- Cross-sectional distribution of training costs in period t

\[\tilde{\varepsilon}_t \] determined endogenously
MODEL

- **Main components**
 - Fixed cost γ^h of “training” each new hire (systematic component)
 - Idiosyncratic training cost for each new hire i

- **Total training cost for new worker i in period $t = \gamma^h + \varepsilon^i$**

 $\varepsilon^i \sim \text{iid } \ln N(0, \sigma^2_{\varepsilon})$

- **Cross-sectional SD σ_{ε} informed by Barron et al**

- **Dispersion of training costs considered a primitive**
 - (Similar to matching function taken as primitive in DMP-based models)

- **No search and matching component**
 - To focus on the endogenous selection component
 - Davis, Faberman, and Haltiwanger (2013 QJE): Evidence of heavily reliance on other margins for hiring in addition to vacancy postings (JOLTS)
Main Results and Contributions

- Efficient volatility arises and is meaningful
 - No wage decentralization in model
 - Conditional on TFP shocks

Empirical elasticity = 2.9

\[\text{elasticity} = 1.2 \]

\[\text{elasticity} = 0.3 \]
EX-ANTE VS. EX-POST HIRING COSTS

- Think about selection model as hiring candidates who have the “best skills”
- Interpret “matching process” as a costly “contact process” or “meeting process”
- But also allow other costs in the hiring of workers

Economic Intuition

- The firm evaluates applicants.
- The firm selects which applicant(s) are “good enough”.
- The firm pays cost to train/integrate new worker(s).
- The firm hopes to “receive applications” – probability of receiving is < 1.
- Probability an applicant is selected is < 1.

Matching phase of hiring new workers

Selection phase of hiring new workers

November 17, 2015
Think about selection model as hiring candidates who have the “best skills”
Interpret “matching process” as a costly “contact process” or “meeting process”
But also allow other costs in the hiring of workers

Meetings are costless ex-ante.
But can meet \(m \) different opportunities (sequential search)

Baseline: Each unemployed individual meets only one firm in any period
Can generalize to allow \(N \) Poisson meetings per period (i.e., \(N=2, N=3, \ldots \))
MAIN RESULTS AND CONTRIBUTIONS

- Efficient volatility occurs and is meaningful
 - No wage decentralization in model
 - Conditional on TFP shocks

- Elasticity of hiring rate wrt TFP: Empirical value = 2.9
 - Has not appeared in literature (as far as we know...)
 - Constructed using data from Shimer (2005) and Michaillat (2012)
 - (Potentially?) another contribution

- Endogenous value from previous example: 1.2
Efficient volatility occurs and is meaningful
- No wage decentralization in model
- Conditional on TFP shocks

Elasticity of hiring rate wrt TFP: Empirical value = 2.9
- Has not appeared in literature (as far as we know...)
- Constructed using data from Shimer (2005) and Michaillat (2012)
- (Potentially?) another contribution

Endogenous value from previous example: 1.2

Caveat / Question
- Depends on the data we employ to calibrate SD σ_ε ...
- ... we use training cost dispersion
- What if we use new hires’ wage dispersion as “upper bound” on SD σ_ε?

$$\sigma_\varepsilon \text{ from wage dispersion} = 1.5 \sigma_\varepsilon \text{ from hiring cost dispersion}$$

→ Volatility results dampen a tiny bit...
Definitions
SELECTION MARGIN

- Optimal decision characterized by cutoff rule
 - Choose endogenous threshold $\tilde{\varepsilon}_i$ below which everybody is selected to work
- CDF (hiring rate, aka selection rate, aka job-finding rate)
 \[
 \eta(\tilde{\varepsilon}_i) = \int_{\varepsilon_i \leq \tilde{\varepsilon}_i} f(\varepsilon_i^i) \cdot d\varepsilon_i^i
 \]
Selection Margin

- Optimal decision characterized by cutoff rule
 - Choose endogenous threshold $\tilde{\epsilon}_t$ below which everybody is selected to work

- CDF (hiring rate, aka selection rate, aka job-finding rate)
 $$\eta(\tilde{\epsilon}_t) = \int_{\epsilon^i_t \leq \tilde{\epsilon}_t} f(\epsilon^i_t) \cdot d\epsilon^i_t$$

- Training cost for threshold new worker $= \gamma^h + \tilde{\epsilon}_t$

- Average idiosyncratic training costs for those individuals who are hired
 $$H(\tilde{\epsilon}_t) = \int_{\epsilon^i_t \leq \tilde{\epsilon}_t} \epsilon^i_t f(\epsilon^i_t) \cdot d\epsilon^i_t$$
Social Planner Model
(Partial Equilibrium)
EFFICIENT SELECTION

- Dynamic surplus maximization problem

\[
\max_{\{n_t, \tilde{e}_t\}} \mathbb{E}_0 \sum_{t=0}^{\infty} \left(\frac{1}{1+r} \right)^t \left[z_t n_t + s_t (1 - \eta(\tilde{e}_t)) b - s_t \eta(\tilde{e}_t) \left(\gamma^b + \frac{H(\tilde{e}_t)}{\eta(\tilde{e}_t)} \right) \right]
\]

\[
n_t = (1 - \rho) n_{t-1} + s_t \eta(\tilde{e}_t)
\]

\[
s_t = lfp - (1 - \rho) n_{t-1}
\]

\textit{lfp fixed in partial equilibrium}
EFFICIENT ALLOCATION

Definition: efficient allocations are endogenous processes \(\{\tilde{\epsilon}_t, n_t\}_{t=0}^\infty \) that satisfy

\[\gamma^h + \tilde{\epsilon}_t = z_t - b + \left(\frac{1 - \rho}{1 + r} \right) E_t \left\{ H(\tilde{\epsilon}_{t+1}) - \tilde{\epsilon}_{t+1} \eta(\tilde{\epsilon}_{t+1}) + \gamma^h + \tilde{\epsilon}_{t+1} \right\} \]

Selection condition

\(\gamma^h + \tilde{\epsilon}_t \)
- Asset value of a new worker

\(z_t - b \)
- Asset value of a replacement new worker

\(\left(\frac{1 - \rho}{1 + r} \right) E_t \left\{ H(\tilde{\epsilon}_{t+1}) - \tilde{\epsilon}_{t+1} \eta(\tilde{\epsilon}_{t+1}) + \gamma^h + \tilde{\epsilon}_{t+1} \right\} \)
- Expected social cost of a replacement new worker hired in \(t+1 \)

Law of motion for aggregate labor

\[n_t = (1 - \rho)n_{t-1} + s_t \eta(\tilde{\epsilon}_t) \]

taking as given initial labor \(n_{-1} \) and exogenous stochastic process \(\{z_t\}_{t=0}^\infty \)
Shape of Distribution

Slope of Distribution at Threshold

How to Calibrate σ_ε
ELASTICITIES

- Steady-state elasticities

- Elasticity of selection threshold wrt TFP
 \[\frac{\partial \ln \tilde{e}}{\partial \ln z} = \frac{z}{\tilde{e}} \cdot \frac{1+r}{r + \rho + (1-\rho)\eta(\tilde{e})} \]

- Elasticity of hiring rate wrt TFP
 \[\frac{\partial \ln \eta(\tilde{e})}{\partial \ln z} = \frac{\partial \ln \eta(\tilde{e})}{\partial \ln \tilde{e}} \cdot \frac{\partial \ln \tilde{e}}{\partial \ln z} = \frac{\eta'(\tilde{e})}{\eta(\tilde{e})} \cdot z \cdot \left(\frac{1+r}{r + \rho + (1-\rho)\eta(\tilde{e})} \right) \]

- Empirical data to measure slope at endogenous cutoff point \(\tilde{e} \)?
- Depends on shape of distribution...
UNIFORM DISTRIBUTION

- Warm-up example
- $\eta'(\tilde{\epsilon})$ independent of ϵ_i

σ_{ϵ} is population SD
σ_{ϵ}^* is sample SD
($= 40\%$ of MPL in Barron et al evidence)
ELASTICITIES

- Steady-state elasticities
- Elasticity of selection threshold wrt TFP
 \[\frac{\partial \ln \tilde{\varepsilon}}{\partial \ln z} = \frac{z}{\tilde{\varepsilon}} \cdot \frac{1 + r}{r + \rho + (1 - \rho)\eta(\tilde{\varepsilon})} \]
- Elasticity of hiring rate wrt TFP
 \[\frac{\partial \ln \eta(\tilde{\varepsilon})}{\partial \ln z} = \frac{\partial \ln \eta(\tilde{\varepsilon})}{\partial \ln \tilde{\varepsilon}} \cdot \frac{\partial \ln \tilde{\varepsilon}}{\partial \ln z} \]
 \[= \frac{\eta'(\tilde{\varepsilon})}{\eta(\tilde{\varepsilon})} \cdot z \cdot \left(\frac{1 + r}{r + \rho + (1 - \rho)\eta(\tilde{\varepsilon})} \right) \]

Warm-up example

U[-1.2, 1.2]
\(\rho = 0.1 \)
\(r = 0.01 \)
\(\eta(\varepsilon) = 0.58 \)

\[= 1.15 \]

Compared to 2.9 empirical elasticity
ELASTICITIES

- **Steady-state elasticities**

- **Elasticity of selection threshold wrt TFP**
 \[
 \frac{\partial \ln \tilde{\epsilon}}{\partial \ln z} = \frac{z}{\tilde{\epsilon}} \cdot \frac{1+r}{r + \rho + (1-\rho)\eta(\tilde{\epsilon})}
 \]

- **Elasticity of hiring rate wrt TFP**
 \[
 \frac{\partial \ln \eta(\tilde{\epsilon})}{\partial \ln z} = \frac{\partial \ln \eta(\tilde{\epsilon})}{\partial \ln \tilde{\epsilon}} \cdot \frac{\partial \ln \tilde{\epsilon}}{\partial \ln z}
 = \frac{\eta'(\tilde{\epsilon})}{\eta(\tilde{\epsilon})} \cdot \frac{z}{(r + \rho + (1-\rho)\eta(\tilde{\epsilon}))}
 \]

 Warm-up example

 \[
 \rho = 0.1 \quad r = 0.01 \quad \eta(\epsilon) = 0.58
 \]

 \[
 = 1.15
 \]

 Compared to 2.9 empirical elasticity

- **Two micro data sources to measure** \(\sigma_\epsilon^* \)
 - Short-term training cost dispersion (EOPP: Employment Opportunity Pilot Project)
 - Wage dispersion for new hires
Quantitative DSPE example

Distribution of training costs assumed log-normal

- σ_ϵ chosen to hit cross-sectional SD of training costs of 40 percent of MPN

- Barron, Black, and Loewenstein (1989, p. 5): SD across new hires of training costs during first three months of employment = 207 hours (= 40% of MPL)

- In our model implies the SD is 40% of worker’s long-run MPL (which is endogenous in the GE model)
CALIBRATION

- Quantitative DSPE example

- Distribution of training costs assumed log-normal
 - σ_ϵ chosen to hit cross-sectional SD of training costs of 40 percent of MPN

- Barron, Black, and Loewenstein (1989, p. 5): SD across new hires of training costs during first three months of employment = 207 hours (= 40% of MPL)

- In our model implies the SD is 40% of worker’s long-run MPL (which is endogenous in the GE model)

- Calibrate γ'' to hit average hiring rate $\approx 58\%$ (a macro calibration approach)
 - Average hiring cost turns out > Barron et al’s measure (= 150 hours)
 - Nobody has negative training costs \rightarrow skewed distribution
CALIBRATION

- Quantitative DSPE example
- Conventional parameters
 - \(r = 0.01 \)
 - Standard quarterly TFP process
 \((\rho_z = 0.95, \sigma_z = 0.007) \)

- Outside option \(b \)
- \(b = 0 \)
- Doesn’t matter at all for efficient allocations!

\[
\frac{\partial \ln \eta(\tilde{\varepsilon})}{\partial \ln z} = \frac{\partial \ln \eta(\tilde{\varepsilon})}{\partial \ln \tilde{\varepsilon}} \frac{\partial \ln \tilde{\varepsilon}}{\partial \ln z}
\]

\[
= \frac{\eta'(\tilde{\varepsilon})}{\eta(\tilde{\varepsilon})} \cdot z \cdot \left(\frac{1 + r}{r + \rho + (1 - \rho) \eta(\tilde{\varepsilon})} \right)
\]
CALIBRATION

- Quantitative DSPE example
- Conventional parameters
 - $r = 0.01$
 - Standard quarterly TFP process ($\rho_z = 0.95, \sigma_z = 0.007$)
- Outside option b
 - $b = 0$
 - Doesn’t matter at all for efficient allocations!
CALIBRATION

- Quantitative DSPE example

- Conventional parameters
 - $r = 0.01$
 - Standard quarterly TFP process ($\rho_z = 0.95$, $\sigma_z = 0.007$)

- Outside option $b = 0$

- Various σ_ε values
 - $= 0.2$
 - $= 0.4$ (Barron et al)
 - $= 0.6$ (wage dispersion)
Sequential Search
SELECTION AND SEQUENTIAL SEARCH

- The model readily admits sequential search (e.g., McCall (1970), Mortensen (1970))

- Suppose Poisson meetings N occur during a quarter
- Baseline considered: $N = 1$

- For $N \geq 1$ meetings during period, job-acceptance condition modifies to

$$\eta(\tilde{c}_i) = m(\tilde{c}_i) \cdot \sum_{j=1}^{N} (1 - m(\tilde{c}_i))^{j-1}$$

- $\eta(\tilde{c}_i)$ is probability that a searching worker accepts a job within a quarter
- $m(\tilde{c}_i)$ is chance that a searching worker accepts a particular contact m during a quarter

- $m = 1 \Rightarrow \eta(\tilde{c}_i) = m(\tilde{c}_i)$
- $m = 2 \Rightarrow \eta(\tilde{c}_i) = m(\tilde{c}_i) \{1 + (1 - m(\tilde{c}_i))\}$
- $m = 3 \Rightarrow \eta(\tilde{c}_i) = m(\tilde{c}_i) \{1 + (1 - m(\tilde{c}_i)) + (1 - m(\tilde{c}_i)) \cdot (1 - m(\tilde{c}_i))\}$
SELECTION AND SEQUENTIAL SEARCH

- $m = 1$
- $m = 2$
- $m = 3$
General Equilibrium
GENERAL EQUILIBRUM

- Endogenous labor supply (endogenous LFP)
- Physical capital investment
- (hence MRSs and MRTs nest textbook RBC model)