BASICS OF DYNAMIC STOCHASTIC (GENERAL) EQUILIBRIUM

SEPTEMBER 5, 2013

HETEROGENEITY

- **Implementing representative consumer**
 - An infinity of consumers, each indexed by a point on the unit interval
 [0,1]
 - **Each individual is identical in preferences and endowments**
 - Implies aggregate consumption demand and asset demand

Aggregate consumption demandOne individual' consumption demand	s X	1	Aggregate savings = demand	One individual' s savings demand	x	1	I
--	--------	---	----------------------------------	-------------------------------------	---	---	---

- Under some particular types of heterogeneity, a representative-consumer foundation of aggregates exists
 - **Provided complete set of Arrow-Debreu securities exists...**
 - **u** ...to allow individuals to diversify away (insure) their idiosyncratic risk
- **Consider heterogeneity**
 - □ In income realizations (from Markov process)
 - □ In initial asset holdings *a*
 - □ In utility functions (application to CRRA utility)
 - **Example:** two types of individuals to illustrate

HETEROGENEITY

Two types of individuals, $i \in \{1,2\}$, each with population weight 0.5

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u^i(c_t^i) \text{ subject to } c_t^i + \sum_i R_t^j a_t^{ij} = y_t^i + a_{t-1}^i$$

□ Optimization between period *t* and state *j* in period *t*+1 (conditional on period *t* outcomes)

$$\frac{u_c^1(c_t^1)}{\beta u_c^1(c_{t+1}^{1j})} = \frac{p_{t+1}^j}{R_t^j} \qquad \frac{p_{t+1}^j}{R_t^j} = \frac{u_c^2(c_t^2)}{\beta u_c^2(c_{t+1}^{2j})}$$

Given all individuals base choices on same prices and probabilities

RISK SHARING

Two types of individuals, $i \in \{1,2\}$, each with population weight 0.5

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u^i(c_t^i) \text{ subject to } c_t^i + \sum_j R_t^j a_t^{ij} = y_t^i + a_{t-1}^i$$

□ Optimization between period *t* and state *j* in period *t*+1 (conditional on period *t* outcomes)

$$\frac{u_c^1(c_t^1)}{\beta u_c^1(c_{t+1}^{1j})} = \frac{u_c^2(c_t^2)}{\beta u_c^2(c_{t+1}^{2j})}$$

In all states at all dates

D PERFECT RISK SHARING

- □ IMRS, for each state *j*, equated across individuals
- Individuals experiencing idiosyncratic shocks can insure them away (provided complete markets)
- **Q** Risk sharing about equalizing fluctuations of u'(.) across individuals
 - **\Box** Not about equalizing levels of u'(.) or consumption over time
- □ If initial conditions, period-zero outcomes, and u(.) are identical (e.g., due to identical a_0 and realized y_0), then risk sharing \rightarrow identical outcomes for all t \rightarrow A representative consumer

RISK SHARING

Two types of individuals, $i \in \{1,2\}$, each with population weight 0.5

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u^i(c_t^i) \text{ subject to } c_t^i + \sum_j R_t^j a_t^{ij} = y_t^i + a_{t-1}^i$$

□ Optimization between period *t* and state *j* in period *t*+1 (conditional on period *t* outcomes)

$$\frac{u_c^1(c_t^1)}{\beta u_c^1(c_{t+1}^{1j})} = \frac{u_c^2(c_t^2)}{\beta u_c^2(c_{t+1}^{2j})}$$

In all states at all dates

D PERFECT RISK SHARING

- □ IMRS, for each state *j*, equated across individuals
- Individuals experiencing idiosyncratic shocks can insure them away (provided complete markets)
- □ If initial conditions, period-zero outcomes, and u(.) are identical (e.g., due to identical a_0 and realized y_0), then risk sharing \rightarrow identical outcomes for all t

Risk sharing across individuals \approx consumption smoothing for a given individual (= if initial conditions, t=0 outcomes, and u(.) identical)

RISK SHARING

- Example: CRRA utility, but heterogenous RRA/IES
 - $\Box \qquad \sigma^1 \neq \sigma^2$

Perfect risk sharing

- **IMRS equated across individuals**
- **Growth rates of consumption not equated unless** $\sigma^1 = \sigma^2$

$$\frac{c_{t+1}^{1j}}{c_t^1} = \left(\frac{c_{t+1}^{2j}}{c_t^2}\right)^{\sigma^2/\sigma^1}$$

Example: CRRA utility, but heterogenous RRA/IES

 $\Box \qquad \sigma^1 \neq \sigma^2$

Perfect risk sharing

- □ IMRS equated across individuals
- **Growth rates of consumption not equated unless** $\sigma^1 = \sigma^2$

- □ Allocations are Pareto-optimal (implied by First Welfare Theorem)
 - □ All MRS's (across individuals, states, and dates) are equated
 - **Even though levels of consumption may differ across individuals**
 - **No individual can be made better off without making some agent worse off**
 - (Pareto welfare concept takes distributions of outcomes as given)
 - Due to complete financial markets
- Pareto-optimal allocations + heterogeneity of utility functions
 - □ There exists a utility function u(c) in aggregate $c = c^1 + c^2$ that leads to the same aggregates (Constantanides (1982)); if CRRA, u(.) has $\sigma \in (\sigma^1, \sigma^2)$

□ Now consider economy-wide aggregates

 $c_{t} = 0.5c_{t}^{1} + 0.5c_{t}^{2}$ $y_{t} = 0.5y_{t}^{1} + 0.5y_{t}^{2}$ $a_{t} = 0.5a_{t}^{1} + 0.5a_{t}^{2}$

(For each type of asset)

Aggregate consumption Aggregate income (endowment)

Aggregate assets?

□ Now consider economy-wide aggregates

	$c_t = 0.5c_t^1 + 0.5c_t^2$	Aggregate consumption		
	$y_t = 0.5 y_t^1 + 0.5 y_t^2$	Aggregate income (endowment)		
(For each type of asset)	$a_t = 0.5a_t^1 + 0.5a_t^2$	Aggregate assets?		

- □ So far have been considering assets as claims (paper!) (partial equilibrium)
- □ In aggregate, must be some tangible asset(s) backing them (gen. equil.)
- □ No physical assets in model so far $\rightarrow a_t = 0$ in aggregate for all t !

□ Now consider economy-wide aggregates

(For each type of asset) $c_t = 0.5c_t^1 + 0.5c_t^2$ $y_t = 0.5y_t^1 + 0.5y_t^2$ $0 = a_t = 0.5a_t^1 + 0.5a_t^2$ **Aggregate consumption**

Aggregate income (endowment)

Aggregate assets = 0 if no *physical* assets

- **So far have been considering assets as claims (paper!) (partial equilibrium)**
- □ In aggregate, must be some tangible asset(s) backing them (gen. equil.)
- □ No physical assets in model so far $\rightarrow a_t = 0$ in aggregate for all t !
- Heterogeneous individuals creating/buying/selling assets vis-à-vis each other
- **Richer models**
 - □ Mediate through "banking" or "insurance" markets, etc.
 - **But only meaningful if some friction/imperfections in model of financial markets...**
 - ...otherwise identical outcomes (in which case "banking" sector is a "veil")

Aggregate consumption

Aggregate assets = 0 if

Aggregate income (endowment)

no physical assets

AGGREGATION

Economy-wide aggregates

$$c_t = 0.5c_t^1 + 0.5c_t^2$$
$$y_t = 0.5y_t^1 + 0.5y_t^2$$
$$0 = a_t = 0.5a_t^1 + 0.5a_t^2$$

Asset market clearing condition (for each type of asset)

□ Aggregate savings = $a_t - a_{t-1} = 0$ for all t

Aggregate together two types' budget constraints $c_t^{1} + \sum_{i} R_t^{j} a_t^{1j} = y_t^{1} + a_{t-1}^{1} \qquad c_t^{2} + \sum_{i} R_t^{j} a_t^{2j} = y_t^{2} + a_{t-1}^{2}$ A general Weight by share of population procedure for Impose asset-market clearing condition(s) constructing economy- $\Rightarrow 0.5(c_t^1 + c_t^2) + \sum_j R_t^j 0.5(a_t^{1j} + a_t^{2j}) = 0.5(y_t^1 + y_t^2) + 0.5(a_{t-1}^1 + a_{t-1}^2)$ wide resource constraint = 0 = 0 8 *i* goods **Goods market clearing** available = $\Rightarrow c_t = y_t$ condition – aka goods used resource constraint

THE THREE MACRO (AGGREGATE) MARKETS

- □ Lifecycle/permanent income consumption model the most basic building block of all macro models
- **Dynamic stochastic general equilibrium (DSGE) theory**
 - **D** (DGE if deterministic)
 - GE: simultaneous determination of prices and quantities in all markets (macro markets: goods, labor, capital)
- **G** Foundations of baseline DSGE model
 - **Q** Representative consumer
 - **Q** Representative firm
 - **D** Perfect competition in all markets
 - **Q** Rational expectations
 - Perfect AD financial markets

THE REAL BUSINESS CYCLE MODEL

Kydland and Prescott (1982), Long and Plosser (1983), King, Plosser, and Rebelo (1988)

- □ All modern macro models descend from RBC model dynamic GE
 - □ No matter how many market imperfections, heterogeneity, etc, etc.
- Foundations of the RBC model
 Without optimizing consumers: Solow growth model
 With optimizing consumers: Ramsey/Cass/Koopmans model

 $y_t + (1 + r_t)a_{t-1}$

- \Box Model of non-asset income so far: endowment y_{tr} possibly stochastic
- $\Box \qquad \text{Now suppose } y_t \text{ is labor income}$

 $y_t = w_t n_t$

- □ Normalize "time available" in each time period to one unit
 - □ Individual decides how to divide between "labor" and "leisure"
 - (Basic models: leisure is all "non-labor," but empirical and theoretical work recently studying the importance of finer categorizations of "non-labor time" for macro issues – e.g., search and matching theory)
 - □ Labor = $n_t \leftrightarrow$ leisure is $l_t = 1 n_t$
 - □ Time is now the <u>endowment!</u>

 $y_t + (1 + r_t)a_{t-1}$

- \Box Model of non-asset income so far: endowment y_{tr} possibly stochastic
- $\Box \qquad \text{Now suppose } y_t \text{ is labor income}$

 $y_t = w_t n_t$

- □ Normalize "time available" in each time period to one unit
 - □ Individual decides how to divide between "labor" and "leisure"
 - (Basic models: leisure is all "non-labor," but empirical and theoretical work recently studying the importance of finer categorizations of "non-labor time" for macro issues – e.g., search and matching theory)
 - □ Labor = $n_t \leftrightarrow$ leisure is $l_t = 1 n_t$
 - □ Time is now the <u>endowment!</u>
- \Box Assert that individuals care about leisure, $u(c_t, \ell_t)$
 - $\Box \qquad u_{ct} > 0, \, u_{lt} > 0, \, u_{cct} < 0, \, u_{llt} < 0$
 - □ Inada conditions on both *c* and *l*
- **G** Sometimes more convenient to represent as $u(c_t, n_t)$
 - $\Box \quad u_{ct} > 0, \, u_{nt} < 0, \, u_{cct} < 0, \, u_{nnt} > 0 \text{ (strictly decreasing and convex in } n)$

□ Intertemporal optimization problem

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, \boldsymbol{n}_t^S) \text{ subject to } c_t + a_t = w_t \boldsymbol{n}_t^S + (1+r_t) a_{t-1}$$

- Individual takes as given {w_t, r_t}_{t=0,1,2,...} -- price-taker in labor market
 From perspective of individual, (w,r) evolve as Markov
- □ Notation *n^s* emphasizes individual's supply of labor

Q Recursive representation

State vector in arbitrary period *t*: $[a_{t-1}; w_t, r_t]$ **Numeraire object:**

consumption

$$V(a_{t-1}; w_t, r_t) = \max_{\{c_t, n_t^s, a_t\}} \left\{ u(c_t, n_t^s) + \beta E_t V(a_t; w_{t+1}, r_{t+1}) \right\}$$

subject to $c_t + a_t = w_t n_t^{S} + (1 + r_t) a_{t-1}$

FOCs

c_t :

n^st :

LABOR SUPPLY

Intertemporal optimization problem

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, \boldsymbol{n}_t^S) \text{ subject to } c_t + a_t = w_t \boldsymbol{n}_t^S + (1+r_t) a_{t-1}$$

- Individual takes as given $\{w_t, r_t\}_{t=0,1,2,...}$ -- price-taker in labor market From perspective of individual, (w,r) evolve as Markov
- Notation n^s emphasizes individual's supply of labor

Recursive representation

State vector in arbitrary period t: $[a_{t-1}; w_t, r_t]$

Numeraire object: consumption

$$V(a_{t-1}; w_t, r_t) = \max_{\{c_t, n_t^s, a_t\}} \left\{ u(c_t, n_t^s) + \beta E_t V(a_t; w_{t+1}, r_{t+1}) \right\}$$

subject to $c_t + a_t = w_t n_t^{S} + (1 + r_t) a_{t-1}$

FOCs

 $\begin{array}{ccc} \boldsymbol{c_t} : & \boldsymbol{u_{ct}} - \boldsymbol{\lambda_t} = 0 \\ \boldsymbol{n^{S}_t} : & \boldsymbol{u_{nt}} + \boldsymbol{\lambda_t} \boldsymbol{w_t} = 0 \end{array} \end{array} \begin{array}{ccc} - \frac{\boldsymbol{u_n}(\boldsymbol{c_t}, \boldsymbol{n_t^{S}})}{\boldsymbol{u_c}(\boldsymbol{c_t}, \boldsymbol{n_t^{S}})} = \boldsymbol{w_t} & \begin{array}{ccc} & \text{CONSUMPTION-LEISURE} \\ \text{OPTIMALITY CONDITION} \\ \text{A static condition} \end{array}$

September 5, 2013

LABOR SUPPLY

$$-\frac{u_n(c_t, n_t^S)}{u_c(c_t, n_t^S)} = w_t \qquad \Rightarrow \quad n_t^S = n^S(w_t; c_t)$$

- **Consumption-leisure (aka consumption-labor) optimality condition**
 - **An intratemporal optimality condition**

Defines period-*t* **labor supply function**

- **G** For given individual...
- **u** ...but if representative agent, equivalent to aggregate labor supply
- □ Note: for given *c*

Example:
$$u(c,n) = \ln c - \frac{\theta}{1+1/\psi} n^{1+1/\psi}$$

- **Compute labor supply function?**
- □ Compute elasticity of n^{S_t} with respect to w_t ? Frisch elasticity of labor supply

THE THREE MACRO (AGGREGATE) MARKETS

September 5, 2013

PRODUCTION OF GOODS

- **Representative firm** produces the numeraire output good of the economy
- **A homogenous output good**
- Perfect competition in goods supply
- □ Inputs
 - **Labor**
 - **Capital**
 - **E.g.**, machines, factories, computers, intangibles, ...
- □ Firm produces using a (aggregate) production technology

 $y_t = z_t \cdot f(k_t^D, n_t^D)$

- \Box k^{D} the firm's capital demand
- \Box *n^D* the firm's labor demand
- \Box f(.) often assumed CRS (Cobb-Douglas, in particular)
- \Box z_t a process that shifts the production function
- \Box Empirically identify z_t as Solow residual
 - **Growth theory:** *z* deterministic
 - **Business cycle theory:** *z* **stochastic (Markov)**

PRODUCTION OF GOODS

Representative firm profit maximization

- **Price taker in capital market, labor market, and output market**
- Baseline model(s)
 - **G** Firm hires/rents labor and capital each period
 - □ Firm does not "own" any capital or labor (without loss of generality if no financial market imperfections)

$$\max_{n_{t}^{D},k_{t}^{D}}\left(z_{t}f(k_{t}^{D},n_{t}^{D})-w_{t}n_{t}^{D}-r_{t}^{k}k_{t}^{D}\right)$$

□ FOCs

$$n^{D}t$$
: $z_{t}f_{n}(k_{t}^{D}, n_{t}^{D}) - w_{t} = 0$

$$k^{D}t$$
: $z_{t}f_{k}(k_{t}^{D}, n_{t}^{D}) - r_{t}^{k} = 0$

PRODUCTION OF GOODS

Representative firm profit maximization

- **Price taker in capital market, labor market, and output market**
- □ Baseline model(s)
 - **G** Firm hires/rents labor and capital each period
 - □ Firm does not "own" any capital or labor (without loss of generality if no financial market imperfections)

$$\max_{n_{t}^{D},k_{t}^{D}} \left(z_{t} f(k_{t}^{D}, n_{t}^{D}) - w_{t} n_{t}^{D} - r_{t}^{k} k_{t}^{D} \right)$$

FOCs

 $n^{P_{t}}$: $z_{t}f_{n}(k_{t}^{D}, n_{t}^{D}) - w_{t} = 0$ DEFINES labor demand function $n^{P}(w_{t})$

 $k^{D}t$: $z_{t}f_{k}(k_{t}^{D}, n_{t}^{D}) - r_{t}^{k} = 0$ DEFINES capital demand function $k^{D}(r^{k}t)$.

For a given firm If rep. firm, equivalent to aggregate

factor demands

```
G Firms entirely static entities in baseline macro model(s)
```

- Contrast with consumers
- □ (NK theory and matching theory: firms are dynamic entities)

THE THREE MACRO (AGGREGATE) MARKETS

CAPITAL SUPPLY

Baseline model(s)

Physical capital takes "time to build"

Simplest: one-period lag between building and using capital

Closed economy

□ Aggregate capital demand must be supplied domestically

Consumer intertemporal optimization problem

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, n_t^S) \text{ subject to } c_t + a_t = w_t n_t^S + (1 + r_t) a_{t-1}$$

- \Box a_{t-1} is a given individual's pre-determined stock of assets
- **Q** Representative agent: a_{t-1} is economy's pre-determined stock of assets
- **Capital-market clearing in each period** *t*

 $k_t^D = a_{t-1} \left(=k_t^S\right)$

THE THREE MACRO (AGGREGATE) MARKETS

CAPITAL SUPPLY

Baseline model(s)

Physical capital takes "time to build"

Simplest: one-period lag between building and using capital

Closed economy

□ Aggregate capital demand must be supplied domestically

Consumer intertemporal optimization problem

 $\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, n_t^S) \text{ subject to } c_t + a_t = w_t n_t^S + (1 + r_t) a_{t-1}$

 \Box a_{t-1} is a given individual's pre-determined stock of assets

Q Representative agent: a_{t-1} is economy's pre-determined stock of assets

Capital-market clearing in each period *t*

 $k_t^D = a_{t-1} \left(= k_t^S\right)$

- $\Box \qquad \text{Capital depreciates at rate } \delta \text{ each period}$
 - **Economic depreciation, due to physical wear and tear of production**
 - Not accounting depreciation
 - **Compensation reflected in capital-market-clearing price:** $r_t = r^k_t \delta$

CAPITAL SUPPLY

- \Box Capital depreciates at rate δ each period
 - **Compensation reflected in capital-market-clearing price:** $r_t = r^{k_t} \delta$
- **Implies capital supply has to be periodically replenished**
 - □ From where?
- **Consumer intertemporal optimization problem**

$$\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, n_t^S) \text{ subject to } c_t + a_t = w_t n_t^S + (1 + r_t) a_{t-1}$$

Euler equation

 $u'(c_t) = \beta E_t \left\{ u'(c_{t+1})(1 + r_{t+1}^k - \delta) \right\}$

- □ From perspective of single individual: characterizes optimal savings (flow!) decision between *t* and *t*+1
- □ From perspective of entire economy: characterizes optimal investment (flow!) in capital stock between *t* and *t*+1
- **Closed economy: domestic savings = domestic investment**
- Note timing: savings/investment decisions in t alter the available capital stock in period t+1 ("time to build")

September 5, 2013

- **Round out final details**
- Baseline model(s)
 - **Consumption goods and capital goods are freely interchangeable**
 - i.e., capital good in a given period can be "dismantled" and used for consumption in future periods
 - No irreversibility of investment process
 - □ Implies relative price (not interest rate...) of capital = 1

- **Round out final details**
- Baseline model(s)
 - **Consumption goods and capital goods are freely interchangeable**
 - □ i.e., capital good in a given period can be "dismantled" and used for consumption in future periods
 - No irreversibility of investment process
 - □ Implies relative price (not interest rate...) of capital = 1
- **CRS** production process f(k,n), firms earn profits = ...?...
 - **Corollary:** factors of production are paid their ...?...

- **Round out final details**
- Baseline model(s)
 - **Consumption goods and capital goods are freely interchangeable**
 - □ i.e., capital good in a given period can be "dismantled" and used for consumption in future periods
 - No irreversibility of investment process
 - □ Implies relative price (not interest rate...) of capital = 1
- **CRS** production process f(k,n), firms earn profits = ...?...
 - □ Corollary: factors of production are paid their ...?...
- Labor-market clearing

 n_t defined as $n^{D_t} = n^{S_t}$, for all t (with clearing price w_t)

Capital-market clearing k_t defined as $k^{D_t} = k^{S_t}$, for all t (with clearing price r^{k_t})

Goods market clearing c_t + k_{t+1} - (1-δ)k_t = z_tf(k_t,n_t), for all t (with clearing price = ...?...)

DYNAMIC GENERAL EQUILIBRIUM

- **Economy-wide state vector in period** $t: (k_t, z_t)$
- $\Box \qquad \text{Consider } T \rightarrow \text{infinity}$
- Definition: a dynamic stochastic general equilibrium is time-invariant state-contingent price functions $w(k_t; z_t)$, $r^k(k_t; z_t)$ and state-contingent consumption, labor, and (one-period-ahead) capital decision rules $c(k_t; z_t)$, $n(k_t; z_t)$, and $k(k_t; z_t)$ that jointly satisfy the following:

DYNAMIC GENERAL EQUILIBRIUM

- **Economy-wide state vector in period** $t: (k_t, z_t)$
- $\Box \qquad \text{Consider } T \rightarrow \text{infinity}$
- Definition: a dynamic stochastic general equilibrium is time-invariant state-contingent price functions $w(k_t; z_t)$, $r^k(k_t; z_t)$ and state-contingent consumption, labor, and (one-period-ahead) capital decision rules $c(k_t; z_t)$, $n(k_t; z_t)$, and $k(k_t; z_t)$ that jointly satisfy the following:

1. (Consumer optimality) Given $w(k_t; z_t)$, $r^k(k_t; z_t)$, the functions $c(k_t; z_t)$, $n(k_t; z_t)$, and $k(k_t; z_t)$ solve the Euler equation (replaced by TVC as $T \rightarrow$ infinity), labor supply function, and flow budget constraint of the representative consumer

2. (Firm optimality) Given $w(k_t; z_t)$, $r^k(k_t; z_t)$, the function $n(k_t; z_t)$ satisfies the labor demand function and k_t satisfies the capital demand function

- 3. (Markets clear)
 - □ Labor-market clearing

 $n(k_t; z_t)$ defined as $n^{D_t} = n^{S_t}$, for all t

Capital-market clearing

 k_t defined as $k^{D_t} = k^{S_{t_t}}$ for all t

Goods market clearing

 $c(k_t; z_t) + k(k_t; z_t) - (1-\delta)k_t = z_t f(k_t, n(k_t; z_t))$, for all t

given the initial capital stock k_0 and (Markov) transition process for $z_t \rightarrow z_{t+1}$