INTERTEMPORAL MODELS: BASICS OF DYNAMIC PROGRAMMING

SEPTEMBER 10, 2013

DYNAMIC PROGRAMMING

	Can we represent intertemporal problems recursively?				
		Rather than sequentially			
	Benefits				
		Allows application of series of theorems/results that guarantee a solution exists in the space of functions			
		Allows application of series of theorems/results that help find solution in the space of functions			
		Computational algorithms require it – computers can't handle infinite- dimensional objects!			
	Costs				
		May rule out some solutions to the original (sequential) problem			
		Requires (a lot?) more structure on the problem			
		Sometimes (often?) not obvious how to recast sequential problem as recursive problem			
	Ljungqvist and Sargent (2004, p. 16)				
	"The art in applying recursive methods is to find a convenient definition of a state. It is often not obvious what the state is, or even whether a finite-dimensional state exists."				

DYNAMIC PROGRAMMING

	Can we represent intertemporal problems recursively?				
		Rather than sequentially			
	Benefits				
		Allows application of series of theorems/results that guarantee a solution exists in the space of functions			
		Allows application of series of theorems/results that help find solution in the space of functions			
		Computational algorithms require it – computers can't handle infinite-dimensional objects!			
	Costs				
		May rule out some solutions to the original (sequential) problem			
		Requires (a lot?) more structure on the problem			
		Sometimes (often?) not obvious how to recast sequential problem as recursive problem			
	Start with deterministic case				
		(Fairly) straightforward			
		Stochastic case requires more structure			

 \Box Lagrangian of consumer problem, with planning horizon T

$$V^{0}(a_{-1}, r_{0};.) = \max_{\{c_{t}, a_{t}\}_{t=0}^{\infty}} \sum_{t=0}^{T} \beta^{t} \left[u(c_{t}) + \lambda_{t} \left(y_{t} + (1 + r_{t-1}) a_{t-1} - c_{t} - a_{t} \right) \right]$$

- ☐ State variables of consumer problem at beginning of any period s
 - \Box a_{s-1} (accumulation variable) the critical one b/c a_{τ} , $\tau \ge s$, are choices
 - \Box r_s (price-taker)
 - A sufficient summary of the dynamic position of the environment in which the consumer operates

 \Box Lagrangian of consumer problem, with planning horizon T

$$V^{0}(a_{-1}, r_{0}; .) = \max_{\{c_{t}, a_{t}\}_{t=0}^{\infty}} \sum_{t=0}^{T} \beta^{t} \left[u(c_{t}) + \lambda_{t} \left(y_{t} + (1 + r_{t-1}) a_{t-1} - c_{t} - a_{t} \right) \right]$$

- ☐ State variables of consumer problem at beginning of any period s
 - \Box a_{s-1} (accumulation variable) the critical one b/c a_{τ} , $\tau \ge s$, are choices
 - \Box r_s (price-taker)
 - A sufficient summary of the dynamic position of the environment in which the consumer operates
- Define $V^0(a_{-1}, r_0; .)$ as value function starting from period zero
 - ☐ The maximized value of the constrained optimization problem
 - ☐ As function of period-zero parameters of the problem
- Goal: recast problem of finding optimal sequence $\{c_t, a_t\}_{t=0,1,2,...T}$ into problem of finding functions $\{V^i(.)\}_{t=0,1,2,...T}$
 - \Box (Actually, find V'(.) along with two other functions)

□ Write out more explicitly

$$\begin{split} V^{0}(a_{-1}, r_{0};.) &\equiv \max_{\{c_{0}, a_{0}, c_{t}, a_{t}\}_{t=1}^{\infty}} \begin{cases} u(c_{0}) + \lambda_{0} \left(y_{0} + (1 + r_{-1})a_{-1} - c_{0} - a_{0}\right) \\ + \sum_{t=1}^{T} \beta^{t} \left[u(c_{t}) + \lambda_{t} \left(y_{t} + (1 + r_{t-1})a_{t-1} - c_{t} - a_{t}\right)\right] \end{cases} \\ &\downarrow \quad \text{Separate terms} \\ V^{0}(a_{-1}, r_{0};.) &\equiv \max_{c_{0}, a_{0}} \left\{u(c_{0}) + \lambda_{0} \left(y_{0} + (1 + r_{-1})a_{-1} - c_{0} - a_{0}\right)\right\} \\ &+ \max_{c_{0}, a_{0}} \left\{\max_{\{c_{t}, a_{t}\}_{t=1}^{\infty}} \sum_{t=1}^{T} \beta^{t} \left[u(c_{t}) + \lambda_{t} \left(y_{t} + (1 + r_{t-1})a_{t-1} - c_{t} - a_{t}\right)\right]\right\} \quad \text{Note the max inside the max} \end{split}$$

Adjust **\beta** factors

Adjust
$$\beta$$
 factors
$$\begin{array}{c}
V^{0}(a_{-1}, r_{0}; .) \equiv \max_{c_{0}, a_{0}} \left\{ u(c_{0}) + \lambda_{0} \left(y_{0} + (1 + r_{-1})a_{-1} - c_{0} - a_{0} \right) \right\} \\
+ \beta \cdot \max_{c_{0}, a_{0}} \left\{ \max_{\left\{c_{t}, a_{t}\right\}_{t=1}^{\infty}} \sum_{t=1}^{T} \beta^{t-1} \left[u(c_{t}) + \lambda_{t} \left(y_{t} + (1 + r_{t-1})a_{t-1} - c_{t} - a_{t} \right) \right] \right\}
\end{array}$$

Bellman Principle of Optimality: optimal decisions in the initial period induce a future state, from which (future) decisions are optimal (Bellman, 1957)

The value resulting from optimal decisions starting from period 1.

Adjust
$$\beta$$
 factors
$$V^{0}(a_{-1}, r_{0}; .) \equiv \max_{c_{0}, a_{0}} \left\{ u(c_{0}) + \lambda_{0} \left(y_{0} + (1 + r_{-1}) a_{-1} - c_{0} - a_{0} \right) \right\}$$

$$+ \beta \cdot \max_{c_{0}, a_{0}} \left\{ \max_{\left\{c_{t}, a_{t}\right\}_{t=1}^{\infty}} \sum_{t=1}^{T} \beta^{t-1} \left[u(c_{t}) + \lambda_{t} \left(y_{t} + (1 + r_{t-1}) a_{t-1} - c_{t} - a_{t} \right) \right] \right\}$$

Bellman Principle of Optimality: optimal decisions in the initial period induce a future state, from which (future) decisions are optimal (Bellman, 1957)

The value resulting from optimal decisions starting from period 1.

Recursive representation of consumer problem

$$V^{0}(a_{-1}, r_{0};.) = \max_{c_{0}, a_{0}} \left\{ u(c_{0}) + \lambda_{0} \left(y_{0} + (1 + r_{-1})a_{-1} - c_{0} - a_{0} \right) + \beta \cdot V^{1}(a_{0}, r_{1};.) \right\}$$

- Bellman Equation
- □ Can analyze optimization problem for period zero...
 - □ ...given Bellman Principle of Optimality holds
 - \square (But how do $V^0(.)$ and $V^1(.)$ relate to each other?)

Bellman Equation

$$V^{0}(a_{-1}, r_{0};.) = \max_{c_{0}, a_{0}} \left\{ u(c_{0}) + \lambda_{0} \left(y_{0} + (1 + r_{-1})a_{-1} - c_{0} - a_{0} \right) + \beta \cdot V^{1}(a_{0}, r_{1};.) \right\}$$

- Starting point for recursive analysis
- □ Applicable to finite *T*-period or $T \rightarrow \infty$ problems
- Construction requires identifying state variables of optimization problem
- □ *T*-period problem
 - □ Solution involves sequence of functions $V^0(.)$, $V^1(.)$, ..., $V^{T-1}(.)$, $V^T(.)$
 - \Box $V^{i}(.)$ functions in general will differ reflecting time until end of planning horizon
 - E.g., maximized value starting from age = 60 different from maximized value starting from age = 30 (intuitively)
- ☐ Infinite-horizon problem
 - Deterministic case: $V(.) = V^{i}(.) = V^{j}(.)$ all i,j
 - □ Always an infinity of periods left to go

Stochastic case?

Requires more structure...

 \square Bellman Equation (for $T \rightarrow \infty$)

$$V(a_{-1}, r_0; .) = \max_{c_0, a_0} \left\{ u(c_0) + \lambda_0 \left(y_0 + (1 + r_{-1}) a_{-1} - c_0 - a_0 \right) + \beta \cdot V(a_0, r_1; .) \right\}$$

- ☐ Use to characterize optimal decisions
- ☐ Period-0 FOCs

 c_o :

*a*₀:

 \square Bellman Equation (for $T \rightarrow \infty$)

$$V(a_{-1}, r_0; .) = \max_{c_0, a_0} \left\{ u(c_0) + \lambda_0 \left(y_0 + (1 + r_{-1}) a_{-1} - c_0 - a_0 \right) + \beta \cdot V(a_0, r_1; .) \right\}$$

- ☐ Use to characterize optimal decisions
- ☐ Period-0 FOCs

 c_0 :

*a*₀:

Return to this ...

<u>Suppose</u> optimal choice characterized by $c_0 = c(a_{-1};.)$, $a_0 = a(a_{-1};.)$ (c(.) and a(.) time-invariant functions in infinite-period problem)

Insert in value function (can now drop max operator)

$$V(a_{-1}, r_0; .) \equiv u(c(a_{-1})) + \lambda_0 \left(y_0 + (1 + r_{-1}) a_{-1} - c(a_{-1}) - a(a_{-1}) \right) + \beta \cdot V(a(a_{-1}), r_1; .)$$

■ Now compute marginal

 \square Bellman Equation (for $T \rightarrow \infty$)

$$V(a_{-1}, r_0; .) \equiv u(c(a_{-1})) + \lambda_0 \left(y_0 + (1 + r_{-1})a_{-1} - c(a_{-1}) - a(a_{-1}) \right) + \beta \cdot V(a(a_{-1}), r_1; .)$$

 \square Now compute marginal (suppress r argument of c(.) and a(.) functions)

$$V_1(a_{-1}, r_0; .) =$$

 \square Bellman Equation (for $T \rightarrow \infty$)

$$V(a_{-1}, r_0; .) \equiv u(c(a_{-1})) + \lambda_0 \left(y_0 + (1 + r_{-1})a_{-1} - c(a_{-1}) - a(a_{-1}) \right) + \beta \cdot V(a(a_{-1}), r_1; .)$$

 \square Now compute marginal (suppress r argument of c(.) and a(.) functions)

$$V_1(a_{-1}, r_0;.) =$$

$$\Rightarrow V_1(a_{-1}, r_0; .) =$$

- evaluate at
$$V_1(a_0, r_1;.) =$$

Envelope Condition

□ Envelope Theorem

- Note: envelope theorem has nothing to do with dynamic programming
- In computing first-order effects of changes in a problem's parameters on the maximized value, can ignore how optimal choices will adjust
 - ☐ Intuition: because already at a max (marginal costs = marginal benefits)
- Need only consider the direct effect

 \square Bellman Equation (for $T \rightarrow \infty$)

$$V(a_{-1}, r_0; .) \equiv u(c(a_{-1})) + \lambda_0 \left(y_0 + (1 + r_{-1})a_{-1} - c(a_{-1}) - a(a_{-1}) \right) + \beta \cdot V(a(a_{-1}), r_1; .)$$

- ☐ Use to characterize optimal decisions
- \square Period-0 FOCs, now evaluated using $c(a_{-1})$, $a(a_{-1})$

$$c_{o}: \quad u'(c(a_{-1})) - \lambda_{0} = 0$$

$$a_{o}: \quad -\lambda_{0} + \beta V_{1}(a_{0}(a_{-1}), r_{1};.) = 0 \qquad \qquad u'(c(a_{-1})) = \beta(1 + r_{0})u'(c(a_{0}))$$
 Env:
$$V_{1}(a(a_{-1}), r_{1};.) = \lambda_{1}(1 + r_{0})$$

□ Seems like usual Euler equation from sequential analysis (deterministic)...

DETERMINISTIC - RECURSIVE ANALYSIS

- □ Solution of infinite-horizon consumer problem (starting from date zero)...
- ...is a consumption decision rule $c(a_{-1};.)$, asset decision rule $a(a_{-1};.)$, and value function $V(a_{-1};.)$ that satisfies
 - □ Bellman equation

$$V(a_{-1}, r_0; .) \equiv u(c(a_{-1})) + \lambda_0 \left(y_0 + (1 + r_{-1})a_{-1} - c(a_{-1}) - a(a_{-1}) \right) + \beta \cdot V(a(a_{-1}), r_1; .)$$

Euler equation

by envelope theorem

$$u'(c(a_{-1})) = \beta V_1(a(a_{-1}), r_1;.)$$
 \longleftarrow $u'(c(a_{-1})) = \beta(1 + r_0)u'(c(a_{-1}))$

- which is the TVC in the limit $t \to \infty$: $\lim_{t \to \infty} \beta^t u'(c(a_{t-1}^*)) \cdot a(a_{t-1}^*) = 0$
- Budget constraint

$$y_0 + (1 + r_{-1})a_{-1} - c(a_{-1}) - a(a_{-1}) = 0$$

taking as given (a_{-1}, r_0, r_{-1})

DETERMINISTIC - SEQUENTIAL ANALYSIS

- □ Solution of infinite-horizon consumer problem (starting from date zero)...
- is a consumption and asset sequence $\left\{c_t^*, a_t^*\right\}_{t=0}^{\infty}$ that satisfies
 - Sequence of flow budget constraints

$$c_t^* + a_t^* = y_t + (1 + r_{t-1})a_{t-1}^*, \quad t = 0, 1, 2, \dots$$

□ Sequence of Euler equations

$$u'(c_t^*) = \beta u'(c_{t+1}^*)(1+r_t), \quad t = 0,1,2,...$$

which is the TVC in the limit $t \to \infty$: $\lim_{t \to \infty} \beta^t u'(c_t^*) a_t^* = 0$

taking as given
$$\left(\left\{r_{t},y_{t}\right\}_{t=0}^{\infty},a_{-1},r_{-1}\right)$$

Does solution to recursive problem coincide with solution to sequential problem?

- Does solution to recursive problem coincide with solution to sequential problem?
- □ Does solution to sequential problem coincide with solution to recursive problem?

- Does solution to recursive problem coincide with solution to sequential problem?
- □ Does solution to sequential problem coincide with solution to recursive problem?

- In constructing Bellman representation ($T \rightarrow \infty$ case), the imposition of time-invariant functions c(a), a(a) potentially limits the class of solutions
 - In original sequential formulation, this is neither explicitly nor implicitly a requirement of the solution!
- ☐ In general (here without proof...)
 - □ Solution to the sequential problem is also a solution to the recursive problem
 - □ Solution to the recursive problem is also a solution to the sequential problem provided some further regularity conditions hold
- ☐ Stokey, Lucas, Prescott text (1989)

□ So why go recursive?

Underlying theory:

- Allows application of series of theorems/results that guarantee a solution exists in the space of functions
- Allows application of series of theorems/results that help find solution in the space of functions

Contraction Mapping Theorem, Blackwell's Sufficient Conditions for a Contraction, Theorem of the Maximum

- Blackwell's Sufficient Conditions for a Contraction: Let X be a subset of R^I and let B(X) be the set of bounded functions $f: X \to R$ with the sup norm. Let $T: B(X) \to B(X)$ be an operator satisfying
 - a. (Monotonicity) $f,g \in B(X)$ and $f(x) \cdot g(x)$, for all $x \in X$, implies $(Tf)(x) \cdot (Tg)(x)$, for all $x \in X$
 - b. (Discounting) There exists some β 2 (0,1) such that

$$[T(f+a)](x) \cdot (Tf)(x) + \beta a$$
, for all $f \in B(X)$, $a \in O$, $x \in X$

Then T is a contraction with modulus β .

(Note: (f+a)(x) is the function defined by (f+a)(x) = f(x) + a)

- Let (S, ρ) be a metric space and $T: S \rightarrow S$ be a function mapping set S into itself. T is a contraction mapping (with modulus β) if for some β 2 (0,1), $\rho(Tx, Ty) \cdot \beta \rho(x, y)$ for all $x, y \in S$.
 - Example: S = [a, b] with $\rho(x, y) = |x y|$ (Euclidean norm)
- Contraction Mapping Theorem: If (S, ρ) is a metric space and $T: S \rightarrow S$ is a contraction mapping with modulus β , then
 - a. T has exactly one fixed point v in set S.
 - b. For any $v_0 \ge S$, $\rho(T^n v_0, v) \cdot \beta \rho(x, y)$ for n = 0, 1, 2, ...
- □ CMT states that a contraction mapping has a unique fixed point, and the fixed point can be found by iterative application of the mapping *T* starting starting from any point in *S*.

☐ General class of problems to which our (usual) economic optimization problems belong have the form

$$(Tv)(x) = \sup_{y_{2i}(x)} [F(x,y) + \beta v(y)]$$

- For our economic theory: would like operator T to map the space C(X) of bounded continuous functions of the state vector into itself. Would also like to be able to characterize the set of maximizing values of y given x.
- Theorem of the Maximum: Let X be a subset of R^I , Y be a subset of R^m , let $f: X \times Y \to R$ be a (single-valued) continuous function, and let $\Gamma: X \to Y$ be a compact-valued and continuous correspondence. The problem we are interested in is of the form $\sup_{y \in \Gamma(x)} f(x, y)$. Then
 - a. sup can be replaced with max because, for each x, the maximum is attained and the function $h(x) = \max_{y \in \Gamma(x)} f(x,y)$ is well defined and continuous
 - b. The correspondence $G(x) = y 2 \Gamma(x) : f(x,y) = h(x)$ is well defined, is non-empty, is compact-valued, and upper hemi-continuous.
- ☐ Theorem of the Maximum establishes the existence of the maximum of the problem.

- Suppose in addition to the hypotheses of the Theorem of the Maximum, the correspondence Γ is convex-valued and the function f is strictly concave in y.
 - \rightarrow Then G is single-valued. Call this function g, and g is continuous.
- Establishes that, given these conditions and given the unique solution of the Bellman Equation, there is a unique g that is the optimal "decision rule."
- If $\{f_n(x,y)\}$ is a sequence of continuous functions converging to f(x,y), each strictly concave in y, then the sequence of functions $\{g_n(x)\}$ (which are the argmax of the sequence $\{f_n(x,y)\}$) converges pointwise to g(x), which is the argmax of f(x,y).
- ☐ The latter result is very useful considered in the context of the Contraction Mapping Theorem. It guarantees that the solutions to the sequence of problems converges to the true solution.

	So v	vhy go recursive?
		Allows application of series of theorems/results that guarantee a solution exists in the space of functions
≺ Underlying theory:		Allows application of series of theorems/results that help find solution in the space of functions
•	Mapping	Theorem, Blackwell's Sufficient Conditions for a Contraction, Theorem of the Maximum
		Computational algorithms require it – computers can't handle infinite-dimensional objects!
		☐ Soon: simple computational algorithms
		t really "choose" whether want to analyze problem uentially or recursively
		All but the most limited of problems/models require computational solution In which case model analysis is recursive
	Wha	nt about stochastic dynamic programming?
		Even more structure required

STOCHASTIC DYNAMIC PROGRAMMING

- □ Even more structure required on the problem to recursively solve dynamic stochastic optimization problems
- Main (new) technical problem
 - Branching of event tree at each of T periods (possibly $T \rightarrow \infty$)
- Main technical solution/assumption
 - Assume risk follows Markov process
 - Which enables series of theorems/results from deterministic dynamic programming to work in stochastic case...
 - □ ...given further technical regularity assumptions