BASICS OF DYNAMIC PROGRAMMING (CONTINUED)

SEPTEMBER 12, 2013

RECURSIVE REPRESENTATION

	Stat	e variables
		A sufficient summary, as of the start of period t , of the dynamic position of the environment in which the maximizing agent operates
		"Environment" of the agent – what needs to be known in order to optimize in period t?
he usual uspects		 □ Individual-specific quantities □ Market prices □ Government policies □ (Fixed structural parameters – will omit from state vector for parsimony)
		"Sufficient" – there are no other objects (quantities, prices, govt policies, etc.) that must be known in order to optimize in period t
		Concept well-defined for both finite- T and $T \rightarrow \infty$ problems
		KEY: Period-t decisions are function of the period-t state variables
	"The	ngqvist and Sargent (2004, p. 16) art in applying recursive methods is to find a convenient definition of a state. It is not obvious what the state is, or even whether a finite-dimensional state exists."

Bellman Equation

$$V^{0}(a_{-1}, r_{0};.) = \max_{c_{0}, a_{0}} \left\{ u(c_{0}) + \lambda_{0} \left(y_{0} + (1 + r_{-1})a_{-1} - c_{0} - a_{0} \right) + \beta \cdot V^{1}(a_{0}, r_{1};.) \right\}$$

- Starting point for recursive analysis
- □ Applicable to finite T-period or $T \rightarrow \infty$ problems
- □ Construction requires identifying state variables
- □ *T*-period problem
 - Solution involves sequence of functions $V^0(.)$, $V^1(.)$, ..., $V^{T-1}(.)$, $V^T(.)$
 - \Box $V^{i}(.)$ functions in general will differ reflecting time until end of planning horizon
 - E.g., maximized value starting from age = 60 different from maximized value starting from age = 30 (intuitively)
- ☐ Infinite-horizon problem ("stationary" environment)
 - Deterministic case: $V(.) = V^{j}(.) = V^{j}(.)$ all i,j
 - □ Always an infinity of periods left to go

□ Bellman Equation (for $T \rightarrow \infty$)

$$V(a_{-1}, r_0; .) \equiv \max_{c_0, a_0} \left\{ u(\mathbf{c_0}) + \lambda_0 \left(y_0 + (1 + r_{-1}) a_{-1} - \mathbf{c_0} - \mathbf{a_0} \right) + \beta \cdot V(\mathbf{a_0}, r_1; .) \right\}$$

- Use to characterize optimal decisions
- \square Period-0 FOCs, evaluated using time-invariant $c(a_{-1})$, $a(a_{-1})$

$$c_{o}: \quad u'(c(a_{-1})) - \lambda_{0} = 0$$

$$a_{o}: \quad -\lambda_{0} + \beta V_{1}(a_{0}(a_{-1}), r_{1};.) = 0$$

$$u'(c(a_{-1})) = \beta(1 + r_{0})u'(c(a_{0}))$$

$$\text{Env: } V_{1}(a(a_{-1}), r_{1};.) = \lambda_{1}(1 + r_{0})$$

□ Seems like usual Euler equation from sequential analysis (deterministic)...

Bellman Equation (for $T \rightarrow \infty$)

$$V(a_{-1}, r_0; .) \equiv u(c(a_{-1})) + \lambda_0 \left(y_0 + (1 + r_{-1}) a_{-1} - c(a_{-1}) - a(a_{-1}) \right) + \beta \cdot V(a(a_{-1}), r_1; .)$$

- Seems like a two-period problem
 - In terms of (value) functions, not in terms of choice variables
 - Optimize in current period
 - Optimize next period (Bellman's Principle of Optimality)
- Common notation
 - Use x for current-period variables
 - Use x' for next-period variables
- **Bellman Equation**

$$V(a,r;.) \equiv u(\underline{c(a)}) + \lambda \left(y + (1+r_{-1})a - \underline{c(a)} - \underline{a(a)} \right) + \beta \cdot V(\underline{a(a)},r';.)$$

$$= c \qquad \qquad = c \qquad =$$

$$= c \qquad \qquad = c' \qquad \qquad a'$$
Euler equation
$$u'(\underline{c(a)}) = \beta(1+r)u'(\underline{c(a')})$$

$$u'(c(a)) = \beta(1+r)u'(c(a'))$$

- So why go recursive?
 - Allows application of series of theorems/results that guarantee a solution exists in the space of functions

 Allows application of series of theorems/results that help find solution
 - in the space of functions

Underlying Theory:

Contraction Mapping Theorem, Blackwell's Sufficient Conditions for a Contraction, Theorem of the Maximum

- Suppose V(.) exists
- Procedure for finding V(.) and associated decision rules: iterate on Bellman Equation starting from any arbitrary initial guess – call it $V^{1}(.)$

$$V(a,r;.) \equiv \max_{c,a'} \left\{ u(c) + \lambda \left(y + (1+r)a - c - a' \right) + \beta \cdot V^{1}(a',r';.) \right\}$$

$$\square \quad \text{Conduct maximization}$$

- Conduct maximization
 - Gives functions c(a) and a(a)
 - These are candidate (optimal) decision rules

- So why go recursive?
 - Allows application of series of theorems/results that guarantee a solution exists in the space of functions

 Allows application of series of theorems/results that help find solution
 - in the space of functions

Underlying Theory:

Contraction Mapping Theorem, Blackwell's Sufficient Conditions for a Contraction, Theorem of the Maximum

- Suppose V(.) exists
- Procedure for finding V(.) and associated decision rules: iterate on Bellman Equation starting from any arbitrary initial guess – call it $V^{1}(.)$

$$V(a,r;.) = \max_{c,a'} \left\{ u(c) + \lambda \left(y + (1+r)a - c - a' \right) + \beta \cdot V^{1}(a',r';.) \right\}$$

Conduct maximization

If no, insert $V^2(.)$ on RHS and repeat _

- Gives functions c(a) and a(a)
- These are candidate (optimal) decision rules
- Insert candidate c(a) and a(a) into RHS of Bellman Equation generates $V^2(.)$

Does
$$V^2(.) = V^1(.)$$
? If yes, stop. Have found $V(.)$ (= $V^2(.) = V^1(.)$)

□ So why go recursive?

□ Allows application of series of theorems/results that guarantee a solution exists in the space of functions

□ Allows application of series of theorems/results that help find solution in the space of functions

Theory:

Contraction Mapping Theorem, Blackwell's Sufficient Conditions for a Contraction, Theorem of the Maximum

e.g., value function iteration

- Computational algorithms require it computers can't handle infinitedimensional objects!
 - Soon: simple computational algorithms

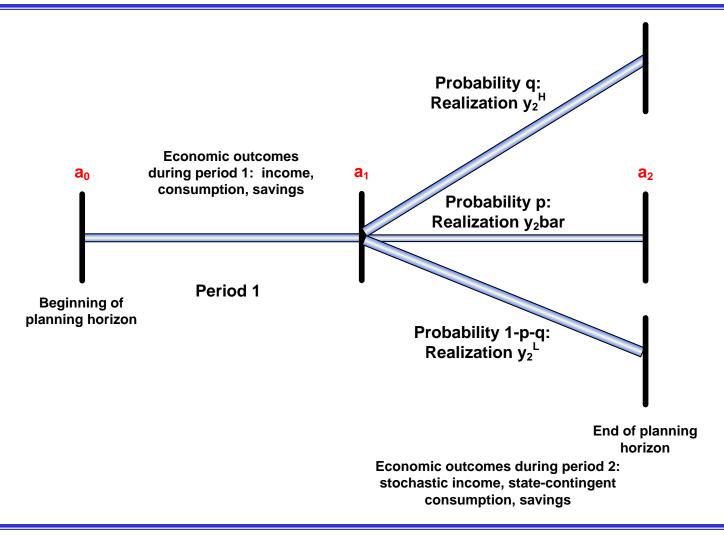
	So why go recursive?				
		Allows application of series of theorems/results that guarantee a solution exists in the space of functions			
≺ Underlying Theory:		solution exists in the space of functions Allows application of series of theorems/results that help find solution in the space of functions			
•	Mapping	Theorem, Blackwell's Sufficient Conditions for a Contraction, Theorem of the Maximum			
e.g., value function iteration		Computational algorithms require it – computers can't handle infinite-dimensional objects! Soon: simple computational algorithms			
	Can'	t "choose" whether to analyze problem sequentially or recursively			
		All but the most limited of problems require computational solution In which case model analysis is recursive			
	"Solving model sequentially"				
		Doesn't seem recursive $u(c_t) = \beta(1+r_t)u'(c_{t+1})$			
		Doesn't seem recursive $u(c_t) = \beta(1+r_t)u'(c_{t+1})$ Imposing recursivity on solution requires time-invariant decision rule $u(c_t) = \beta(1+r_t)u'(c_{t+1})$ $u(c_t) = \beta(1+r_t)u'(c_{t+1})$			

	So why go recursive?			
		Allows application of series of theorems/results that guarantee a solution exists in the space of functions		
≺ Jnderlying Гheory:		Allows application of series of theorems/results that help find solution in the space of functions		
	Mapping	Theorem, Blackwell's Sufficient Conditions for a Contraction, Theorem of the Maximum		
e.g., value unction teration		Computational algorithms require it – computers can't handle infinite-dimensional objects! Soon: simple computational algorithms		
	Can't	"choose" whether to analyze problem sequentially or recursively		
		All but the most limited of problems require computational solution		
		In which case model analysis is recursive		
	What	about stochastic dynamic programming?		
		Even more structure required		
		The key assumption is Markov risk		

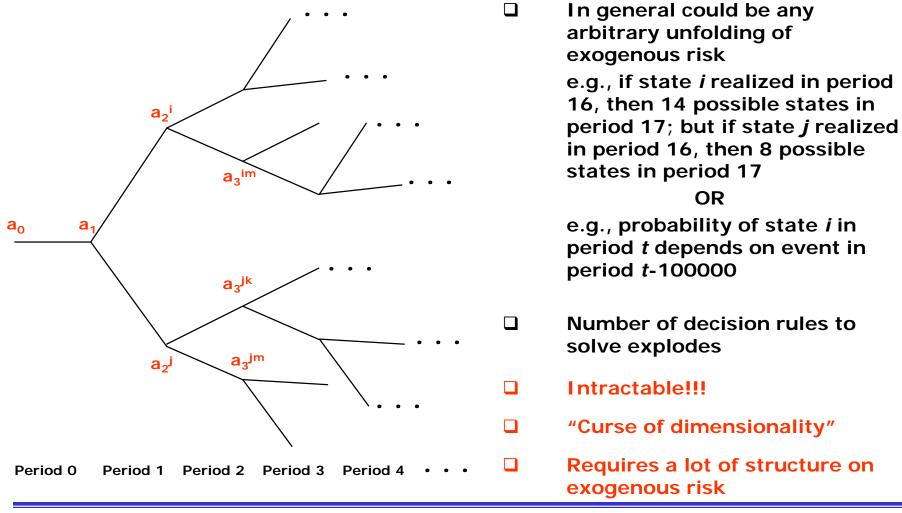
STOCHASTIC DYNAMIC PROGRAMMING

- Even more structure required on the problem to recursively solve dynamic stochastic optimization problems
- Main (new) technical problem
 - Branching of event tree at each of T periods (possibly $T \rightarrow \infty$)
- Main technical solution/assumption
 - Assume risk follows Markov process
 - ☐ Which enables series of theorems/results from deterministic dynamic programming to work in stochastic case...
 - □ ...given further technical regularity assumptions

EVENT TREE



EVENT TREE



RISK STRUCTURE

Assumptions

□ Set of realizations of exogenous state variable is independent of date

$$S2 = S3 = S4 = S5 = = ST-1 = ST$$

RISK STRUCTURE

Assumptions

- □ Set of realizations of exogenous state variable is independent of date
- Probability of realization of exogenous state variable in period t depends only on outcomes in period t-1
 - Suppose X_t is a stochastic process and x_t is a particular realization
 - \square X_t is a Markov process if

$$\Pr \left({{X_t} = {x_t}\left| {{X_{t - 1}} = {x_{t - 1}},{X_{t - 2}} = {x_{t - 2}},{X_{t - 3}} = {x_{t - 3}},....,{X_{t - 10000}} = {x_{t - 10000}},....} \right)} \\ = \Pr \left({{X_t} = {x_t}\left| {{X_{t - 1}} = {x_{t - 1}}} \right.} \right) \text{ CONDITIONAL probability depends on only } \textit{t-1}} \right.$$

- □ Not as restrictive as it may seem could have finite lags in process
- ⊒ E.g.

☐ Just can't have infinite lags (in principle) or "too many" (finite) lags (in computational practice)

RISK STRUCTURE

Assumptions

- □ Set of realizations of exogenous state variable is independent of date
- □ Probability of realization of exogenous state variable in period *t* depends only on outcomes in period *t*-1
 - Suppose X_t is a stochastic process and x_t is a particular realization
 - \square X_t is a Markov process if

$$\Pr \left({{X_t} = {x_t}\left| {{X_{t - 1}} = {x_{t - 1}},{X_{t - 2}} = {x_{t - 2}},{X_{t - 3}} = {x_{t - 3}},....,{X_{t - 10000}} = {x_{t - 10000}},....} \right)} \\ = \Pr \left({{X_t} = {x_t}\left| {{X_{t - 1}} = {x_{t - 1}}} \right.} \right) \text{ CONDITIONAL probability depends on only } \textit{t-1}} \right)$$

- □ Not as restrictive as it may seem could have finite lags in process
- Exogenous state variable is Markov process + assumption/result that decision rules are time-invariant (for $T \rightarrow \infty$) functions of state variables
 - ⇒ Endogenous processes are Markov given several regularity assumptions

Underlying theory: Stokey, Lucas, Prescott (1989, Chapters 8-12)

- □ Planning horizon $T \rightarrow \infty$
- \square Exogenous state drawn from set S (could be continuous or discrete)
- \Box Suppose single asset with state-contingent r (will illustrate main ideas)

$$\max_{\{c_t,a_t\}_{t=0}^T} E_0 \sum_{t=0}^T \beta^t u(c_t) \text{ subject to } \begin{cases} c_t + a_t = y_t + (1+r_t)a_{t-1}, & t = 0,1,2,...T \\ \text{state-contingent budget constraints in } t > 0 \end{cases}$$

☐ FOCs

*c*₀:

 a_0 :

 c_1 :

- □ Planning horizon $T \rightarrow \infty$
- **□** Exogenous state drawn from set *S* (could be continuous or discrete)
- \Box Suppose single asset with state-contingent r (will illustrate main ideas)

$$\max_{\{c_t,a_t\}_{t=0}^T} E_0 \sum_{t=0}^T \beta^t u(c_t) \text{ subject to } \begin{cases} c_t + a_t = y_t + (1+r_t)a_{t-1}, & t = 0,1,2,...T \\ \text{state-contingent budget constraints in } t > 0 \end{cases}$$

□ FOCs

$$c_0$$
: $u'(c_0) - \lambda_0 = 0$

$$a_0$$
: $-\lambda_0 + \beta E_0 [\lambda_1 (1+r_1)] = 0$

$$c_1$$
: $\beta E_0 u'(c_1) - \beta E_0 \lambda_1 = 0$

Just as in stochastic two-period model

$$1 = E_0 \left| \frac{\beta \lambda_1}{\lambda_0} (1 + r_1) \right|$$

$$E_0 u'(c_1^j) = E_0 \lambda_1^j, \ \forall j \in S$$

- □ Planning horizon $T \rightarrow \infty$
- □ Exogenous state drawn from set *S* (could be continuous or discrete)
- \Box Suppose single asset with state-contingent r (will illustrate main ideas)

$$\max_{\{c_t,a_t\}_{t=0}^T} E_0 \sum_{t=0}^T \beta^t u(c_t) \text{ subject to } \begin{cases} c_t + a_t = y_t + (1+r_t)a_{t-1}, & t = 0,1,2,...T \\ \text{state-contingent budget constraints in } t > 0 \end{cases}$$

□ FOCs

$$c_1$$
: $\beta E_0 u'(c_1) - \beta E_0 \lambda_1 = 0$

Holds for each state

$$E_0 u'(c_1^j) = E_0 \lambda_1^j, \ \forall j \in S$$

$$a_1$$
: $-\beta E_0 \lambda_1 + \beta^2 E_0 [\lambda_2 (1 + r_2)] = 0$

$$c_2$$
: $\beta^2 E_0 u'(c_2) - \beta^2 E_0 \lambda_2 = 0$

Holds for each state

$$E_0 u'(c_2^j) = E_0 \lambda_2^j, \ \forall j \in S$$

STOCHASTIC - MARKOV SOLUTION

- \Box { X_t }_{t=0,1,2,...} is Markov process (exogenous and endogenous states)
 - Nothing about the probability distribution of X_{t+2} is known in period t that is not known in period t+1
 - □ Information set of period t+1 is superset of information set of period t
- □ Allows applying a law of iterated expectations

$$\Box \qquad E_{t} X_{t+2} = E_{t} [E_{t+1} X_{t+2}]$$

$$E_0 \lambda_1 = \beta E_0 \left[\lambda_2 (1 + r_2) \right] \qquad \qquad E_0 \lambda_1 = \beta E_0 \left[E_1 \left(\lambda_2 (1 + r_2) \right) \right]$$

□ Date- and state-contingent decisions: decisions governed by this Euler condition are conditional on information set of period 1 (i.e., recursivity)

$$E_1 \lambda_1 = \beta E_1 \left[\lambda_2 (1 + r_2) \right] \qquad \lambda_1 = \beta E_1 \left[\lambda_2 (1 + r_2) \right]$$

- Planning horizon $T \rightarrow \infty$
- Exogenous state drawn from set S (could be continuous or discrete)
- Suppose single asset with state-contingent r (will illustrate main ideas)

$$\max_{\{c_t,a_t\}_{t=0}^T} E_0 \sum_{t=0}^T \beta^t u(c_t) \text{ subject to } \begin{cases} c_t + a_t = y_t + (1+r_t)a_{t-1}, & t = 0,1,2,...T \\ \text{state-contingent budget constraints in } t > 0 \end{cases}$$

FOCs

$$c_1$$
: $\beta E_0 u'(c_1) - \beta E_0 \lambda_1 = 0$

$$a_1: -\beta E_0 \lambda_1 + \beta^2 E_0 [\lambda_2 (1 + r_2)] = 0$$

$$c_2$$
: $\beta^2 E_0 u'(c_2) - \beta^2 E_0 \lambda_2 = 0$

state

state

$$E_2u'(c_2^j) = E_2\lambda_2^j, \forall i \in S$$

 $\lambda_1 = \beta E_1 \left[\lambda_2 (1 + r_2) \right]$

 $E_1u'(c_1^J) = E_1\lambda_1^J, \ \forall j \in S$

$$E_2 u'(c_2^j) = E_2 \lambda_2^j, \ \forall j \in S$$

STOCHASTIC - MARKOV SOLUTION

- □ Planning horizon $T \rightarrow \infty$
- \square Exogenous state drawn from set S (could be continuous or discrete)
- \Box Suppose single asset with state-contingent r (will illustrate main ideas)

$$\max_{\{c_t,a_t\}_{t=0}^T} E_0 \sum_{t=0}^T \beta^t u(c_t) \text{ subject to } \begin{cases} c_t + a_t = y_t + (1+r_t)a_{t-1}, & t = 0,1,2,...T \\ \text{with uncertain realizations in } t > 0 \end{cases}$$

☐ FOCs

$$c_t$$
: $\beta^t E_0 u'(c_t) - \beta^t E_0 \lambda_t = 0$

Holds for each date and state

$$u'(c_1^j) = \lambda_1^j, \ \forall j \in S$$

$$a_t$$
: $-\beta^t E_0 \lambda_t + \beta^{t+1} E_0 [\lambda_{t+1} (1 + r_{t+1})] = 0$

Because Markov and state- and date-contingent decisions

$$\lambda_{t} = \beta E_{t} \left[\lambda_{t+1} (1 + r_{t+1}) \right]$$

$$c_{t+1}$$
: $\beta^{t+1}E_0u'(c_{t+1}) - \beta^{t+1}E_0\lambda_{t+1} = 0$

Holds for each date and state

$$u'(c_2^j) = \lambda_2^j, \ \forall j \in S$$

One-period-ahead conditional expectation governs stochastic Euler condition

STOCHASTIC - MARKOV SOLUTION

- Denote exogenous state variables as z (e.g., $z_t = [y_t, r_t]$)
- Solution of infinite-horizon consumer problem is a consumption decision rule c(a, z;.), asset decision rule a(a, z;.), and value function V(a, z;.) that satisfies
 - ☐ (Stochastic) Euler equation

$$u'(c(a,z)) = \beta E[u'(c(a',z'))(1+r')]$$

which is the (expectational) TVC in the limit $t \rightarrow \infty$:

$$\lim_{t\to\infty} E_0 \beta^t u'(c(a,z)) \cdot a(a,z) = 0$$

■ Budget constraint

$$y + (1+r)a - c(a,z) - a(a,z) = 0$$
 Expectation in Bellman Equation $z \rightarrow z'$

Bellman Equation

$$V(a, z;.) = u(c(a, z)) + \lambda (y + (1+r)a - c(a, z) - a(a, z)) + \beta \cdot EV(a(a, z), z(a, z);.)$$

taking as given (y,a,r) and (Markov) transition function for $z \rightarrow z'$

□ Bellman Equation (for $T \rightarrow \infty$)

$$V(a, z;.) \equiv \max_{c,a'} \left\{ u(c) + \lambda \left(y + (1+r)a - c - a' \right) + \beta \cdot \underbrace{EV(a', z';.)}_{\uparrow} \right\}$$

- Use to characterize optimal decisions
- Expectation in Transition from Bellman Equation $z \rightarrow z'$
- \Box Current-period FOCs, evaluated using c(a,z;.), a(a,z;.)

c:
$$u'(c(a,z)) - \lambda = 0$$

a': $-\lambda + \beta EV_1(a(a,z), z(a,z);.) = 0$
 $u'(c(a,z)) = \beta E[u'(c(a,z))(1+r)]$

Env: $EV_1(a,z;.) = \lambda(1+r)$

- □ Bellman analysis goes through as in deterministic case
 - ☐ (Given further technical conditions we won't study see SLP)

Markov Risk

Why does Markov assumption make everything work?
Main issue in moving from deterministic dynamic programming to stochastic dynamic programming: preserving recursivity ☐ So exogenous states must also have recursive structure
Shocks that have this recursive structure are Markov processes
Markov has property that given the current realization, future realizations are independent of the past "Limited history dependence" "Finite memory"
In environments in which the "regularity conditions" that ensure standard Bellman analysis applies to stochastic problems are not satisfied
often simply need to ASSUME decision rules are Markov to make