THE BASELINE RBC MODEL: THEORY AND COMPUTATION

SEPTEMBER 17, 2013

STYLIZED MACRO FACTS

- Foundation of (virtually) all DSGE models (e.g., RBC model) is Solow growth model
- So want/need/desire business-cycle models to be consistent with basic growth facts
- Kaldor's Stylized Growth Facts (time averages)

"New Kaldor Facts"

1. Output per worker exhibits ~constant growth

Capital per worker exhibits ~constant growth

Jones and Romer, 2010 AEJ:Macro

- 3. Rate of return on capital is ~constant
- 4. Capital-output ratio is ~constant
- 5. Factor shares (i.e., payments to capital and payments to labor as fraction of GDP) are ~constant
- Business-cycle model

2.

- Interested in fluctuations around long-run growth path
- How to construct/extract long-run trend?
 - Most common procedure: HP filter
 - Eliminates (if data were stationary) fluctuations at frequencies lower than eight years

STYLIZED MACRO FACTS

- Kaldor's Stylized Facts:
 - 1. Output per worker exhibits ~constant growth
 - 2. Capital per worker exhibits ~constant growth
 - 3. Rate of return on capital is ~constant
 - 4. Capital-output ratio is ~constant
 - 5. Factor shares (i.e., payments to capital and payments to labor as fraction of GDP) are ~constant
- Some basic cyclical volatilities SD% (i.e., time-series SD of HP-filtered component)

GDP:	C: CNDUR: CSERV: CDUR:
I:	TOTAL HOURS: AVG HOURS:
WAGE:	

WHAT DO WE WANT TO MODEL?

- Relative volatilities
- Persistence (i.e., first-order serial correlation) of various series
- Business cycle comovements
 - Corr(C, Y) =
 - **■** Corr(I, Y) =
 - Corr(HOURS, Y) =
 - Corr(WAGE, Y) =
- Labor markets?
 - Extensive margin movements of individuals in and out of employment (i.e., work H = 0 hours or H > 0 hours)
 - Intensive margin how many hours to work given an individual already works (i.e., work H = 39 hours or H = 40 hours or H = 41 etc...)
 - The basic RBC model blurs the difference
 - Prescott: "LS elasticity of 3 is right..."

THE THREE MACRO MARKETS

- Goods Market(s)
- Labor Market(s)
- Asset/Savings Market(s)
- Consumers
 - Demand goods
 - Supply labor
 - Supply assets/savings
- Firms
 - Produce goods
 - Demand labor
 - Demand assets/savings (capital)
- Government: auxiliary in the basic model

BUILDING BLOCKS

- Consumers
 - Maximize lifetime utility (i.e., a dynamic problem)
- Firms
 - Maximize profits
- Prices adjust to clear all markets
 - Hence a general equilibrium model
- Unpredictable fluctuations in total factor productivity (TFP) are the driving source of business cycles in baseline RBC model
 - Identify TFP as the Solow residual
 - y(t) = z(t)*f(k(t), n(t))

HOUSEHOLDS

Maximize lifetime utility (i.e., a dynamic problem) subject to sequence of budget constraints:

$$\max E_0 \sum_{t=0}^{t} \beta^t u(c_t, n_t) \quad \text{s.t.} \quad c_t + k_{t+1} - (1 - \delta) k_t = w_t n_t + r_t k_t$$

- Set up Lagrangian; optimality conditions
 - Consumption-Leisure Optimality Condition: MRS between consumption and labor equals real wage

$$-\frac{u_n(c_t, n_t)}{u_c(c_t, n_t)} = w_t$$

 Consumption-Savings Optimality Condition (Euler equation): MRS between present and future consumption equals real return on savings (a difference equation)

$$u_c(c_t, n_t) = \beta E_t \left\{ u_c(c_{t+1}, n_{t+1}) (1 + r_{t+1} - \delta) \right\}$$

THE REST OF THE MODEL

- **Firms:** maximize profits period-by-period $\max_{n_t, k_t} z_t f(k_t, n_t) w_t n_t r_t k_t$
 - **FOCs yield factor-pricing conditions:** $W_t = Z_t f_n(k_t, n_t), r_t = Z_t f_k(k_t, n_t)$
- Government: omit from baseline RBC model
- **Resource constraint:** $c_t + k_{t+1} (1 \delta)k_t = z_t f(k_t, n_t)$
- Exogenous process

$$\ln z_{t+1} = (1 - \rho_z) \ln \overline{z} + \rho_z \ln z_t + \varepsilon_{t+1}^z$$

- TFP follows AR(1) (satisfies Markov property), with persistence ρ_z
- Average productivity zbar; white noise process $\varepsilon \sim N(0, \sigma_z^2)$
- Specification in logs implies fluctuations are in deviations of TFP from the average zbar

PUTTING THE MODEL TOGETHER: EQUILIBRIUM

INDIVIDUALS' DECISIONS ARE OPTIMAL

- Consumer decisions:
 - Taking as given the real wage and the rental price of capital, choices of consumption, investment, and labor solve utility maximization
- Firm decisions:
 - Taking as given the real wage and the rental price of capital, choices of labor and capital solve profit maximization

ALL MARKETS CLEAR

- Prices in goods, labor, and asset/savings markets adjust
 - Price of consumption normalized to one in every period
 - Prices (and thus decisions) depend on how TFP (and any other exogenous processes) evolves over time

THE MODEL DETERMINES:

Allocations: consumption, labor, savings/investment

Prices: real wage, rental rate of capital

THE EQUATIONS AND VARIABLES

Equilibrium Conditions

$$-\frac{u_{n}(c_{t}, n_{t})}{u_{c}(c_{t}, n_{t})} = w_{t}$$

$$u_{c}(c_{t}, n_{t}) = \beta E_{t} \left\{ u_{c}(c_{t+1}, n_{t+1})(1 + r_{t+1} - \delta) \right\}$$

$$c_{t} + k_{t+1} - (1 - \delta)k_{t} = z_{t} f(k_{t}, n_{t})$$

$$w_{t} = z_{t} f_{n}(k_{t}, n_{t}), \quad r_{t} = z_{t} f_{k}(k_{t}, n_{t})$$

$$\ln z_{t+1} = (1 - \rho_{z}) \ln \overline{z} + \rho_{z} \ln z_{t} + \varepsilon_{t+1}^{z}$$

- **Exogenous variables (the inputs to the model):** $\{z_t\}_{t=0}^{\infty}$
- Endogenous variables (the outputs of the model): $\{c_t, n_t, k_{t+1}, w_t, r_t\}_{t=0}^{\infty}$
 - Easy to express wage and rental rate as functions of z, k, and n

THE EQUATIONS AND VARIABLES

Equilibrium Conditions

$$-\frac{u_n(c_t,n_t)}{u_c(c_t,n_t)} = z_t f_n(k_t,n_t)$$
 Consumption-Labor Efficiency Condition
$$u_c(c_t,n_t) = \beta E_t \left\{ u_c(c_{t+1},n_{t+1})(1+z_{t+1}f_k(k_{t+1},n_{t+1})-\delta) \right\}$$
 Consumption-Investment Efficiency Condition
$$c_t + k_{t+1} - (1-\delta)k_t = z_t f(k_t,n_t)$$
 Resource Constraint
$$\ln z_{t+1} = (1-\rho_z) \ln \overline{z} + \rho_z \ln z_t + \varepsilon_{t+1}^z$$
 Law of motion for TFP

- **Exogenous variables (the inputs to the model):** $\{z_t\}_{t=0}^{\infty}$
- Endogenous variables (the outputs of the model): $\{c_t, n_t, k_{t+1}\}_{t=0}^{\infty}$

HOW TO USE THE MODEL?

- Need to specify/solve for FUNCTIONS (aka "decision rules") that describe how:
 - Consumers make choices based on prices and policies
 - Firms make choices based on prices and policies
 - Prices depend on state variables (capital, TFP, and all other exogenous variables)
- Except for very special cases, must turn to quantitative (i.e., numerical) methods
 - Because of the difference (differential) equation in the model:

Euler equation

- Looking for an equilibrium in which endogenous variables are timeinvariant functions of the state of the model $S_t \equiv [k_t; z_t]$
 - State describes the dynamic position of the model
 - So looking for $c(S_t), n(S_t), k(S_t)$

- Cannot solve difference equations analytically in general
 - These solutions are unknowable in general
 - Hence need to approximate so look for

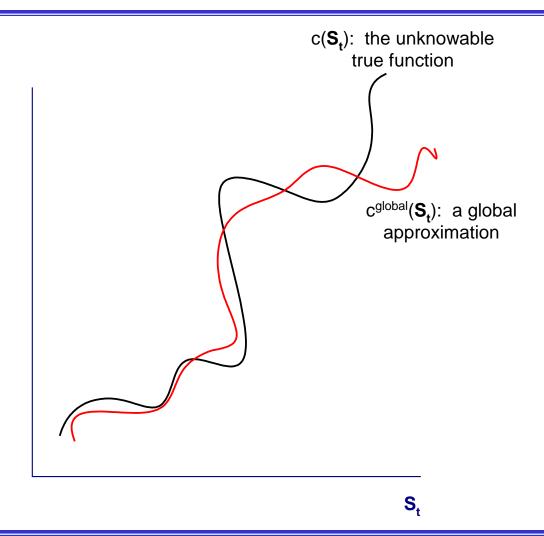
$$c^{approx}(S_t), n^{approx}(S_t), k^{approx}(S_t)$$

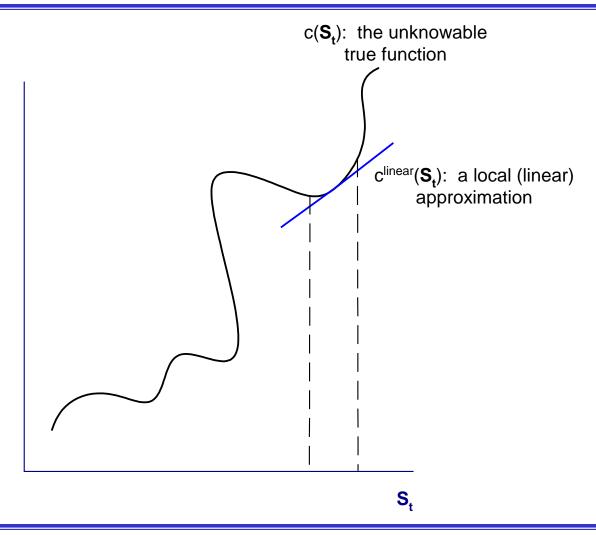
which are hopefully near the (unknowable...) truth...

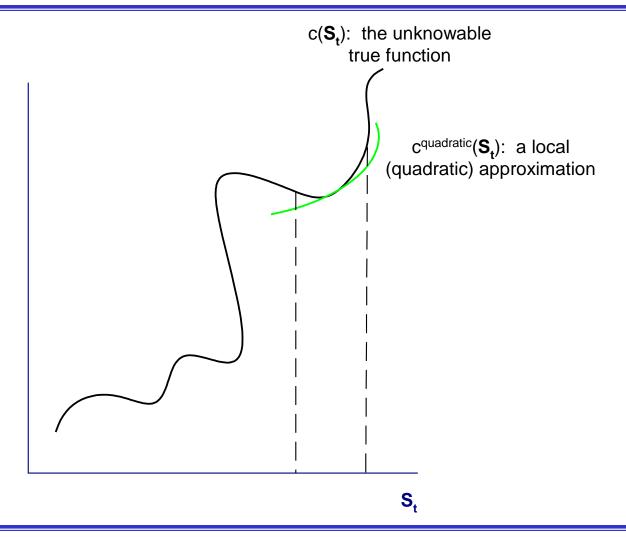
TYPES OF APPROXIMATIONS

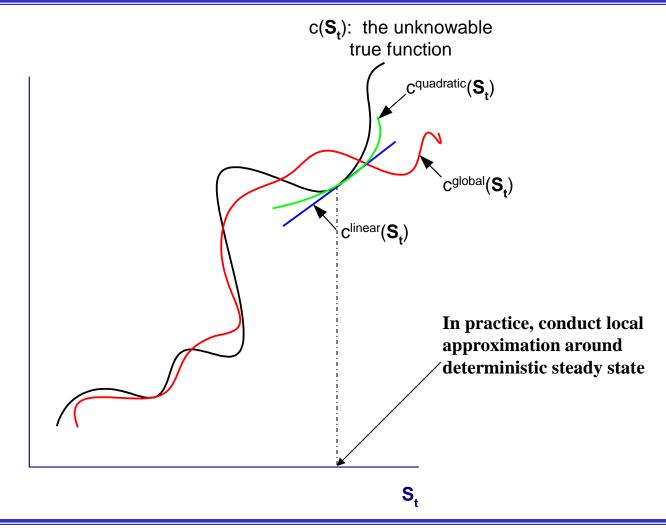
- Global: approximated functions are close to true functions "everywhere" (over a very broad range of states)
 - Hard to implement for medium- and large-scale models given current hardware capacity
 - Several popular methods
 - Chebyshev polynomials
 - Finite-element methods
 - Value function iteration
- **Local:** approximated functions are close to true functions only in a relatively small range of the state space
 - Much easier to implement
 - Based on Taylor approximations
 - Linear (first-order)
 - Quadratic (second-order)

Etc.









STEADY STATE

- Shut down all shocks and set exogenous variables at their means
- Let model economy run for many (infinite) periods
 - Time eventually "doesn't matter" any more
 - Drop all time indices

$$-\frac{u_n(c,n)}{u_c(c,n)} = \overline{z}f_n(k,n)$$

$$u_c(c,n) = \beta u_c(c,n)(1+\overline{z}f_k(k,n)-\delta)$$

$$c+\delta k = \overline{z}f(k,n)$$

- (c, n, k) is a triple of scalars that are the steady state (aka long run) outcomes of the model economy
- Given functional forms and parameter values, solve for (c, n, k)
 - Conduct local approximation around this point