CALIBRATING THE (RBC + SOLOW) MODEL

SEPTEMBER 19, 2013

STEADY STATE

- □ Deterministic steady state the natural point of approximation
- ☐ Shut down all shocks and set exogenous variables at their means
- ☐ The idea: let economy run for many (infinite) periods
 - □ Time eventually "doesn't matter" any more
 - □ Drop all time indices

$$-\frac{u_n(\overline{c},\overline{n})}{u_c(\overline{c},\overline{n})} = \overline{z}F_n(\overline{k},\overline{n})$$

$$u_{c}(\overline{c}, \overline{n}) = \beta u_{c}(\overline{c}, \overline{n}) \Big[\overline{z} F_{k}(\overline{k}, \overline{n}) + 1 - \delta \Big]$$
$$\overline{c} + \delta \overline{k} = \overline{z} F(\overline{k}, \overline{n})$$

 $\ln \overline{z} = (1 - \rho_z) \ln \overline{z} + \rho_z \ln \overline{z} \Rightarrow \overline{z} = \overline{z}$ (a parameter of the model)

- \square Given functional forms and parameter values, solve for $(\overline{c}, \overline{n}, \overline{k})$
 - ☐ The steady state of the model
 - □ Taylor expansion around this point

CALIBRATION – PHILOSOPHY

An economic model is a measuring device		
If model makes "believable" predictions along some important dimensions (i.e., "matches some key data")		
then maybe its predictions are "believable" along the novel dimensions of the model		
Getting some "partial derivatives" of the model in known directions correct		
may build credibility that its "partial derivatives" in novel directions are at least not grossly incorrect		
Make model match some data of interest – often long-run (i.e., time-averaged data) growth facts		
□ Preferably well-accepted "stylized facts"		
Solow growth model in the background		
□ Natural candidate: Kaldor growth facts		
Calibration vs. Estimation		

CALIBRATION OF BASELINE RBC MODEL

	Must take a stand on three (related) points			
		Which data do we want model to match? (even constructing data is challenging)		
		Functional forms (utility, production)		
		Parameter values		
	Choose functional forms consistent with "Kaldor-plus facts"			
		(K1) Capital income share and labor income share of GDP are stationary		
		(K2) All real quantity variables grow at same rate in the long run		
		(K3) Real interest rate is stationary		
		(K4) Hours per worker are stationary		
		(K5) (K2) requires trend productivity to be labor-augmenting (Phelps 1966)		
	Ofte	en start with RBC model that abstracts from long-run growth		
	But	"true" calibration begins with model featuring only long-run growth		
		Puts restrictions on instantaneous utility and production forms		
		Use (K1)-(K5) to obtain these restrictions		
	Richer models: more calibration targets and/or treating data differently			
		Monopoly markups (e.g., Dixit-Stiglitz and sticky price models)		
		Probability of finding a job (e.g., labor matching models)		
		Durable consumption vs. non-durable consumption		

RBC Model with Growth

- Absent shocks, TFP grows at deterministic rate y П
- Planner problem/perfect competition П

$$\max E_0 \sum_{t=0}^{\infty} b^t u(C_t, n_t) \qquad \text{subject to}$$

Trend productivity is laboraugmenting (Harrod-neutral) (Makes use of fact (K5))

Flow resource constraint

Red indicates variables or parameters that will be modified when detrending the model

$$C_t + K_{t+1} - (1 - \delta)K_t = z_t F(K_t, n_t X_t)$$

$$X_{t} = \gamma X_{t-1}, \qquad \gamma \geq 1$$

Evolution of deterministic component of productivity

given stochastic process for evolution of z_t and (K_{-1}, z_0, X_0)

- П Suppose $z_t = 1$ always, so only deterministic growth
- Deterministic dynamics of $(C_t, K_{t+1}, n_t, X_{t+1})$ governed by

(1)
$$-\frac{u_n(C_t, n_t)}{u_c(C_t, n_t)} = X_t F_2(K_t, n_t X_t)$$

Labor supply function (aka consumption-labor optimality)

(2)
$$\frac{u_C(C_t, n_t)}{bu_C(C_{t+1}, n_{t+1})} = F_1(K_{t+1}, n_{t+1}X_{t+1}) + 1 - \delta$$

Capital supply function (aka consumption-savings optimality)

(3)
$$C_t + K_{t+1} - (1 - \delta)K_t = F(K_t, n_t X_t)$$

(4)
$$X_{\bullet} = \gamma X_{\bullet, 1}$$
 Normalize $X_0 = 1$

Deterministic dynamics of (C_t, K_{t+1}, n_t, X_t) governed by

(1)
$$-\frac{u_n(C_t, n_t)}{u_c(C_t, n_t)} = X_t F_2(K_t, n_t X_t)$$
 (3) $C_t + K_{t+1} - (1 - \delta)K_t = F(K_t, n_t X_t)$

(3)
$$C_t + K_{t+1} - (1-\delta)K_t = F(K_t, n_t X_t)$$

(2)
$$\frac{u_C(C_t, n_t)}{bu_C(C_{t+1}, n_{t+1})} = F_1(K_{t+1}, n_{t+1}X_{t+1}) + 1 - \delta$$
 (4)
$$X_t = \gamma X_{t-1}$$

$$X_{t} = \gamma X_{t-1}$$

(K1) Capital income share and labor income share of GDP are stationary And viewing economic profits as zero

$$\Rightarrow F(K, nX) = K^{\alpha} (nX)^{1-\alpha} \quad (\alpha \approx 0.4)$$

 \square Deterministic dynamics of (C_t, K_{t+1}, n_t, X_t) governed by

(1)
$$-\frac{u_n(C_t, n_t)}{u_c(C_t, n_t)} = (1 - \alpha) X_t \left(\frac{K_t / X_t}{n_t} \right)^{\alpha}$$
 (3)
$$C_t + K_{t+1} - (1 - \delta) K_t = K_t^{\alpha} (n_t X_t)^{1 - \alpha}$$

(2)
$$\frac{u_C(C_t, n_t)}{bu_C(C_{t+1}, n_{t+1})} = \alpha \left(\frac{K_{t+1} / X_{t+1}}{n_{t+1}} \right)^{\alpha - 1} + 1 - \delta$$
 (4)
$$X_t = \gamma X_{t-1}$$

☐ (K2) All real quantity variables grow at same rate in the long run

$$\Rightarrow \frac{Y_{t+1}}{Y_t} = \frac{C_{t+1}}{C_t} = \frac{K_{t+1}}{K_t} = \frac{X_{t+1}}{X_t} = \gamma, \quad \forall t$$

$$\Rightarrow y_t \equiv \frac{Y_t}{X_t} = \overline{y}, \quad k_t \equiv \frac{K_t}{X_t} = \overline{k}, \quad c_t \equiv \frac{C_t}{X_t} = \overline{c}, \quad \forall t$$

 \square And scale (3) by X_t to make stationary

$$-\frac{u_n(C_t, n_t)}{u_c(C_t, n_t)} = (1 - \alpha) X_t \left(\frac{k_t}{n_t}\right)^{\alpha}$$

$$\frac{u_C(C_t, n_t)}{bu_C(C_{t+1}, n_{t+1})} = \alpha \left(\frac{k_{t+1}}{n_{t+1}}\right)^{\alpha - 1} + 1 - \delta$$

Note long run growth rate affects capital accumulation even in stationary representation!

$$c_{t} + \gamma k_{t+1} - (1 - \delta) k_{t} = k_{t}^{\alpha} n_{t}^{1 - \alpha}$$

$$X_{t} = \gamma X_{t-1}$$

 \square Deterministic dynamics of (C_t, n_t, X_t) governed by

$$-\frac{u_n(C_t, n_t)}{u_c(C_t, n_t)} = (1 - \alpha) X_t \left(\frac{\overline{k}}{n_t}\right)^{\alpha}$$

(3)
$$\overline{c} + \gamma \overline{k} - (1 - \delta) \overline{k} = \overline{k}^{\alpha} n_t^{1 - \alpha}$$

(2)
$$\frac{u_C(C_t, n_t)}{bu_C(C_{t+1}, n_{t+1})} = \alpha \left(\frac{\overline{k}}{n_{t+1}}\right)^{\alpha - 1} + 1 - \delta$$

$$X_{t} = \gamma X_{t-1}$$

☐ (K4) Hours per worker are stationary

$$\Rightarrow n_t = \overline{n}$$

along deterministic path.

BUT \bar{n} is endogenous...

 \square Deterministic dynamics of C_t governed by

(1)
$$-\frac{u_n(C_t, \overline{n})}{u_c(C_t, \overline{n})} = (1 - \alpha)X_t \left(\frac{\overline{k}}{\overline{n}}\right)^{\alpha}$$
 (3)
$$\overline{c} + \gamma \overline{k} - (1 - \delta)\overline{k} = \overline{k}^{\alpha} \overline{n}^{1 - \alpha}$$

(2)
$$\frac{u_C(C_t, \overline{n})}{bu_C(C_{t+1}, \overline{n})} = \alpha \left(\frac{\overline{k}}{\overline{n}}\right)^{\alpha - 1} + 1 - \delta$$

- ☐ Implied already (RHS of (2)) is
 - ☐ (K3) Real interest rate is stationary
- ☐ Final step functional form for utility?
- □ Observations
 - Optimal choice of labor (\overline{n}) must be independent of X_t (from (1))
 - □ Requires offsetting income and substitution effects of wages (long-run productivity) on labor supply
 - IMRS can only depend on C_{t+1}/C_t (from (2)), which in turn = γ
- ☐ Two requirements together imply

$$u(C_{t}, n_{t}) = \begin{cases} \frac{\left[C_{t}v(n_{t})\right]^{1-\sigma} - 1}{1-\sigma} & \text{if } \sigma > 0, \ \sigma \neq 1 \\ \ln C_{t} + v(n_{t}) & \text{if } \sigma = 1 \end{cases}$$
King, Plosser, Rebelo (1988 *JME*)

STEADY STATE

- \square Steady state $(\overline{c}, \overline{n}, \overline{k})$ solves (1), (2), (3)
- ☐ A dynamic phenomenon!
 - ☐ Not static!
 - □ Economy is moving exactly along its long-run (i.e., deterministic) growth path
 - Balanced growth path
- ☐ Scale of absolute quantity outcomes within model is meaningless
 - \square What does, e.g., $\overline{c} = 1.56$ mean?
- Relative quantity outcomes are interpretable
 - Provide calibration targets
 - e.g., \overline{c} / \overline{y} = 0.70, \overline{k} / \overline{y} = 2.5 (if annual measurement)
- Time use and intertemporal price outcomes within model are interpretable
 - Provide calibration targets
 - \square \overline{n} is fraction of time spent in paid market work
 - □ Empirical: $n \approx 0.30$
 - \Box Return on capital $\alpha \left(\frac{\overline{k}}{\overline{n}}\right)^{\alpha-1} + 1 \delta$
- ☐ Use ss calibration targets to set parameter values, given functional forms

RBC Model Without Growth

Often start instead with

$$u(c_t, n_t) = \begin{cases} \frac{\left[c_t v(n_t)\right]^{1-\sigma} - 1}{1-\sigma} & \text{if } \sigma > 0, \ \sigma \neq 1 \\ \ln c_t + v(n_t) & \text{if } \sigma = 1 \end{cases} \quad \text{and} \quad \sum_{t=0}^{\infty} \beta^t u(c_t, n_t)$$

- For this transformed model to deliver same steady state (relative quantities, time use, and r), require

 - Subjective discount factor $\beta = b\gamma^{1-\sigma}$ (King and Rebelo, p. 945)
- \square Typical assumption y = 1 omits growth altogether
- \square What if trend growth rate fluctuates, γ_t ?
 - Typical representation cannot accommodate trend shocks because y = 1
 - Trend shocks fairly common in small-open-economy models
 - ☐ Affects discount factor and capital accumulation equation

- \square Assuming $\gamma = 1...$
- □ ...complete calibration?
- □ Data: long-run labor income share of GDP ≈ 0.60
 - \square Cobb-Douglas F(.) implies

$$\frac{wn}{F(k,n)} = \frac{(1-\alpha)k^{\alpha}n^{1-\alpha}}{k^{\alpha}n^{1-\alpha}} = 1-\alpha \qquad \Rightarrow \qquad \alpha = 0.40$$

 \square Data: long-run ratio of (annual) gross investment to capital stock \approx 0.07

$$\frac{k - (1 - \delta)k}{k} = \frac{\delta k}{k} = 0.07 \qquad \Rightarrow \qquad \delta = 0.07 \text{ (annual) or } 0.018 \text{ (quarterly)}$$

- \square Data: long-run ratio of (annual) output to capital stock ≈ 0.4
 - ☐ Steady-state Euler equation

$$1 = \beta \left[\frac{\alpha k^{\alpha} n^{1-\alpha}}{k} + 1 - \delta \right] = \beta \left[\frac{\alpha F(k, n)}{k} + 1 - \delta \right] \implies \beta = 0.95 \text{ (annual) or } 0.99 \text{ (quarterly)}$$

OR Data: avg. net real return on capital \approx 5% per year (e.g, return on S&P500)

☐ Steady-state Euler equation

$$f_k(k,n) = \frac{1}{\beta} - 1 + \delta$$
 \Rightarrow $\beta = 0.96$ (annual) or 0.99 (quarterly)

September 19, 2013

Utility parameters

$$u(c_t, n_t) = \begin{cases} \frac{\left[c_t v(n_t)\right]^{1-\sigma} - 1}{1-\sigma} & \text{if } \sigma > 0, \ \sigma \neq 1\\ \ln c_t + v(n_t) & \text{if } \sigma = 1 \end{cases}$$

- □ Data: IES is around unity(?) or lower
 - □ Implies $\sigma > 1$
 - \Box (Recall: IES = $1/\sigma$ for time-separable CRRA utility)
 - \Box σ = 1 a conventional value
- □ Labor subutility
 - □ Common form

$$v(n) = -\frac{\psi}{1 + 1/\eta} n^{1 + 1/\eta}$$

- \square measures Frisch elasticity of labor supply (use C-L optimality condition)
- \square Calibrate Ψ to hit $\overline{n} \approx 0.3$
- ☐ Empirical evidence on Frisch elasticity?

	Labor supply elasticity "controversial"
<u> </u>	Micro evidence: very low – η (substantially) smaller than one Macro evidence: very high – η (substantially) larger than one
	"Tension" between macro and micro evidence not useful way to frame the "controversy"
	Micro studies pick up intensive margin of labor supply Macro studies pick up (mostly) extensive margin of labor supply And other frictions in allocation of workers to jobs
	Chetty (2011 <i>Econometrica</i>): uses both macro and micro evidence to put bounds on labor supply elasticity
	Common in DSGE models: $\eta > 1$

□ Exogenous process for TFP (deviations from long-run trend productivity)

$$\ln z_{t+1} = (1 - \rho_z) \ln \overline{z} + \rho_z \ln z_t + \varepsilon_{t+1}$$

$$\varepsilon_{t+1} \square \text{ iid } N(0, \sigma_z^2)$$

- \square Normalize $\overline{z} = 1$
 - Only governs absolute scale of model, which is arbitrary
 - \square What does, e.g., $\overline{c} = 1.56$ mean?
- \square Construct time-series for z_t using
 - □ Data on labor, (detrended) capital, and (detrended) output
- □ AR(1) estimation
 - Quarterly frequency

$$\Rightarrow \rho_z = 0.95$$
 and $\sigma_z = 0.006$

Using the RBC (or any dsge) Model

- 1. Dream up/construct/write fully-articulated model
 - Ideally to answer questions motivated by data and with hypotheses
- 2. Choose parameter values
 - Perhaps extremely rigorously, if goal is to match certain empirical facts very precisely
 - Perhaps adopting generally-accepted values, if goal is to illustrate some insight
- 3. Solve for deterministic steady state (balanced growth path)
- 4. Solve for dynamic decision rules (e.g., linear approximation, second-order approximation, global approximation)
- 5. Conduct informative battery of experiments (impulse responses, simulations, etc.) to try to falsify hypotheses
- 6. Tabulate results, write a (good!) paper, get it published