# MONOPOLISTIC COMPETITION IN A DSGE MODEL: PART I

## **FEBRUARY 23, 2012**

## **EMPIRICAL AND THEORETICAL CONSIDERATIONS**

- Evidence supports existence of markups in goods markets (i.e., p > mc)
  - □ Basu and Fernald (1997 JPE) often-cited source
- Evidence also supports positive (but small?...) pure economic profits
- □ Are firms always price-takers?
  - □ If not, must endow them with market power
- If increasing returns in production exist, a model without market power does not admit an equilibrium with increasing returns
- **Introduce imperfect competition** 
  - **Typically monopolistic competition...**
  - …a building block of modern sticky-price models

#### **WORKHORSE MODEL**

#### □ Dixit-Stiglitz (1977 AER) model

- Most common specification of imperfect competition in macro models
- **(Near-) universal building block of modern sticky price models**
- □ Basic idea: imperfectly-substitutable goods combined yield an aggregate good

 $\varepsilon$  the constant elasticity of substitution between any pair of differentiated goods

$$c_{t} = \left[\sum_{i=1}^{N_{t}} c_{it}^{\frac{\varepsilon-1}{\varepsilon}}\right]^{\frac{\varepsilon}{\varepsilon-1}}$$
$$c_{t} = \left[\int_{0}^{N_{t}} c_{t}(i)^{\frac{\varepsilon-1}{\varepsilon}} di\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

**Discrete number of differentiated goods** 

**Continuum of differentiated goods** 

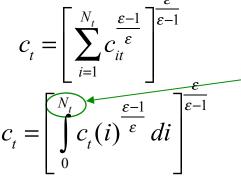
#### **WORKHORSE MODEL**

#### □ Dixit-Stiglitz (1977 AER) model

- Most common specification of imperfect competition in macro models
- □ (Near-) universal building block of modern sticky price models
- □ Basic idea: imperfectly-substitutable goods combined yield an aggregate good

 $\varepsilon$  the constant elasticity of substitution between any pair of differentiated goods

In some applications, make  $\varepsilon$ time-varying (either endogenously or exogenously)



**Discrete number of differentiated goods** 

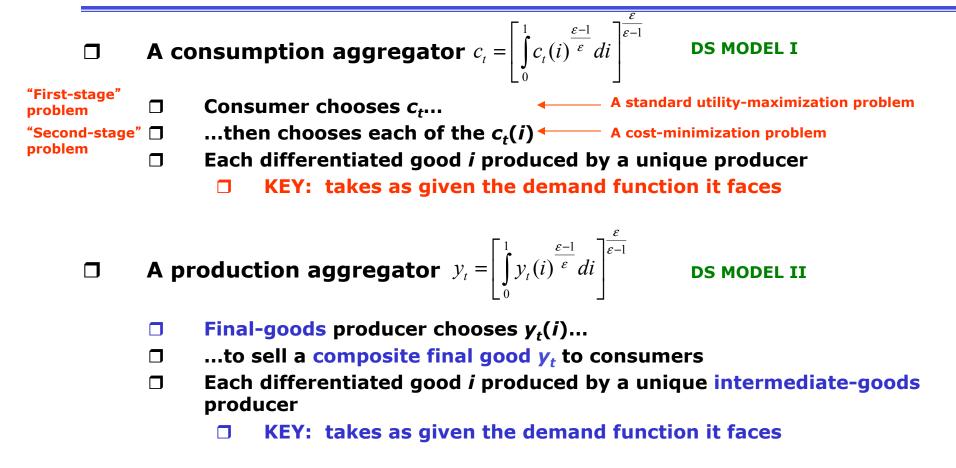
In some applications, make this endogenous and/or time-varying,  $N_t$ 

**Continuum of differentiated goods** 

- Important properties of aggregator
  - **Symmetric in all arguments**
  - **Strictly increasing in all arguments**
  - **Strictly concave in all arguments**
  - Homogenous of degree one

Drives efficiency/optimal policy results (later...)

## **TWO EQUIVALENT IMPLEMENTATIONS**



### **MARKET ORGANIZATION**



- Some fixed production factor –
   See Rotemberg and Woodford (*Frontiers* chapter) primarily useful for calibrating profit share for details on "materials cost" foundations
- Differentiated producer *i* hires inputs on perfectly-competitive markets...
- …and sells its output on its own *monopolistically-competitive* market
  - **Sells "directly" to consumers... DS MODEL I**
  - □ ...or to final-goods firms DS MODEL II
- **Common assumption:**  $\phi = 0$  ( $\rightarrow$  mc = ac assuming CRS)

## **FINAL-GOODS FIRMS**

#### **DS MODEL II**

(Representative) final goods producer 

 $\max_{y_{it}} y_{t} - \int_{0}^{1} p_{it} y_{it} di$ NOTE: final output serving as numeraire Substitute in CES final-goods aggregator

$$\max_{y_{it} \downarrow_{i=0}^{1}} \left[ \int_{0}^{1} y_{it}^{\frac{\varepsilon-1}{\varepsilon}} di \right]^{\frac{\varepsilon}{\varepsilon-1}} - \int_{0}^{1} p_{it} y_{it} di$$

February 23, 2012

## **FINAL-GOODS FIRMS**

#### **DS MODEL II**

(Representative) final goods producer 

 $\max_{y_{it} >_{i=0}^{1}} y_{t} - \int_{0}^{1} p_{it} y_{it} di$ NOTE: final output serving as numeraire
Substitute in CES final-goods aggregator

$$\max_{y_{it}\rangle_{i=0}^{1}} \left[ \int_{0}^{1} y_{it}^{\frac{\varepsilon-1}{\varepsilon}} di \right]^{\frac{\varepsilon}{\varepsilon-1}} - \int_{0}^{1} p_{it} y_{it} di$$

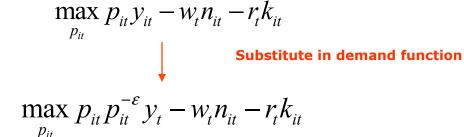
Takes as given all  $p_{it}$ 

Profit-maximization leads to demand functions for each underlying differentiated good i

 $y_{it} = p_{it}^{-\varepsilon} \cdot y_t$  taken as given by differentiated firm *i* Each differentiated firm *i* chooses its *p*<sub>*i*</sub> to maximize profit Relative price of firm *i*'s Aggregate output a shifter of firm i's demand function output

#### **DS MODEL II**

**D** Differentiated goods producer *i* 



- □ A "two-stage" optimization problem
  - **Stage 1:** Choose optimal  $p_i$

i.e., total production y<sub>i</sub> is simply "read off the demand curve"

- □ (Intermediate "stage"): "choose" to produce the  $y_i$  corresponding to the optimal choice of  $p_i$
- **Stage 2:** Choose factor inputs to produce  $y_i$  at minimum cost

#### **DS MODEL II** Differentiated goods producer *i* $\max p_{it} y_{it} - w_t n_{it} - r_t k_{it}$ Substitute in demand function $\max p_{it} p_{it}^{-\varepsilon} y_t - w_t n_{it} - r_t k_{it}$ $p_{it}$ A "two-stage" optimization problem Stage 1: Choose optimal $p_i$ i.e., total (Intermediate "stage"): "choose" to produce the y<sub>i</sub> corresponding production $y_i$ is to the optimal choice of $p_i$ simply "read off the Stage 2: Choose factor inputs to produce $y_i$ at minimum cost demand curve" GIVEN 1) CRS f(k, n) and 2) $\phi = 0$ $\rightarrow$ mc = ac = CONSTANT (with respect to quantity) STAGE-1 $\max p_{it} p_{it}^{-\varepsilon} y_t - mc_t p_{it}^{-\varepsilon} y_t$ $\max p_{it} p_{it}^{-\varepsilon} y_t - mc_t y_{it} - m$ PROBLEM $p_{it}$ $p_{it}$ Substitute in demand function

February 23, 2012

#### **DS MODEL I or II**

**D** Differentiated goods producer *i* optimal choice of  $p_i$ 

$$p_{it} = \frac{\varepsilon}{\varepsilon - 1} \cdot mc_t$$

Gross product-market markup

Linked *only* to degree of substitutability

**RBC model:**  $\varepsilon$  = infinity (perf. comp.)

Monopoly model requires  $\varepsilon > 1$ and  $\varepsilon <$  infinity

#### **DS MODEL I or II**

 $\Box$  Differentiated goods producer *i* optimal choice of  $p_i$ 

$$p_{it} = \frac{\varepsilon}{\varepsilon - 1} \cdot mc_t$$

Gross product-market markup

Linked *only* to degree of substitutability

**RBC model:**  $\varepsilon$  = infinity (perf. comp.)

Stage 2: cost-minimization NOTE: cost-Monopoly model requires  $\varepsilon > 1$ **Given** optimal  $(p_i, y_i)$ minimization and  $\varepsilon$  < infinity  $\max_{k_{it}, n_{it}} p_{it} z_t f(k_{it}, n_{it}) - w_t n_{it} - r_t k_{it}$ equivalent to profitmaximization substitute  $p_{it} = [z_t f(k_{it}, n_{it})]^{-1/\varepsilon} y_t^{1/\varepsilon}$  from dmd. fct. GIVEN  $(p_i, y_i)$  -i.e., DUAL PROBLEM  $\max_{k_{it}, n_{it}} \left[ z_t f(k_{it}, n_{it}) \right]^{1-1/\varepsilon} y_t^{1/\varepsilon} - w_t n_{it} - r_t k_{it}$ Factor demands  $(k_{ir}, n_i)$  solve  $\frac{\varepsilon - 1}{\varepsilon} p_{it} z_t f_k(k_{it}, n_{it}) = r_t \qquad \frac{\varepsilon - 1}{\varepsilon} p_{it} z_t f_n(k_{it}, n_{it}) = w_t$ 

February 23, 2012

## **BUILDING THE EQUILIBRIUM**

#### **DS MODEL I or II**

**Putting things together – impose symmetry across all** *i* 

$$\frac{\varepsilon - 1}{\varepsilon} p_t z_t f_k(k_t, n_t) = r_t \quad \& \quad \frac{\varepsilon - 1}{\varepsilon} p_t z_t f_n(k_t, n_t) = w_t \quad \& \quad p_t = \frac{\varepsilon}{\varepsilon - 1} \cdot mc_t$$

$$\lim_{t \to \infty} mc_t = \frac{w_t}{z_t f_n(k_t, n_t)} = \frac{r_t}{z_t f_k(k_t, n_t)}$$

#### **BUILDING THE EQUILIBRIUM**

#### **DS MODEL I or II**

**Putting things together – impose symmetry across all** *i* 

$$\frac{\varepsilon - 1}{\varepsilon} p_t z_t f_k(k_t, n_t) = r_t \quad \mathbf{a} \quad \frac{\varepsilon - 1}{\varepsilon} p_t z_t f_n(k_t, n_t) = w_t \quad \mathbf{a} \quad p_t = \frac{\varepsilon}{\varepsilon - 1} \cdot mc_t$$

$$\lim_{t \to \infty} mc_t = \frac{w_t}{z_t f_n(k_t, n_t)} = \frac{r_t}{z_t f_k(k_t, n_t)}$$

Symmetric equilibrium *relative price* of an intermediate good? Substitute demand functions into DS aggregator and compute...

$$p_t = 1$$

$$\downarrow$$

$$mc_t = \frac{\varepsilon - 1}{\varepsilon}$$

With measure one of intermediate firms, can think of as a normalization...but what if measure  $[0, N_t]$  of firms?

#### < 1 with $\varepsilon$ > 1 and $\varepsilon$ < infinity

Monopoly power causes factor prices to fall below marginal products... hence inefficiently low equilibrium factor use...hence inefficiently low total output

## **MONOPOLISTICALLY-COMPETITIVE EQUILIBRIUM**

- Equilibrium Conditions (symmetric across all differentiated goods)
  - **Consumption-leisure optimality condition**
  - **Consumption-savings optimality condition**
  - □ Aggregate resource constraint

$$c_t + k_{t+1} - (1 - \delta)k_t = z_t f(k_t, n_t)$$

□ (Market clearing in labor, capital, and goods markets)

$$\square \qquad mc_t = \frac{\varepsilon - 1}{\varepsilon} \quad \forall t \quad (< 1 \text{ with } \varepsilon > 1)$$

**Factor prices a mark***down* of marginal products

$$w_t = \frac{\varepsilon - 1}{\varepsilon} \cdot z_t f_n(k_t, n_t), \ k_t = \frac{\varepsilon - 1}{\varepsilon} \cdot z_t f_k(k_t, n_t)$$

### THE LABOR WEDGE

