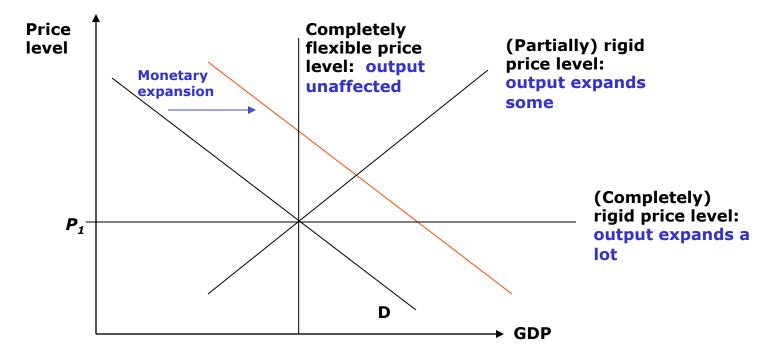
NOMINAL RIGIDITIES IN A DSGE MODEL: BASIC CALVO-YUN MODEL

FEBRUARY 29, 2012

BUSINESS CYCLE IMPLICATIONS OF MONEY

Conventional Keynesian view: nominal rigidities (in price and/or wage level) cause monetary shifts to have real effects



Do money demand distortions have a role in policy transmission? Cooley and Hansen (1989, 1991): Not very much...

GENERAL ISSUES

How often do prices change empirically?...

- □ Wide heterogeneity across goods/categories of goods
 - Bils and Klenow (2004 JPE), Nakamura and Steinsson (2007), Kehoe and Midrigan (2007), Klenow and Krystov (2007), many others...
- □ Median ~ 2-3 quarters...
- Image: mail in the second s
 - □ Aggregate price level?
 - Individual goods/sectors? Thus require a model of heterogeneity in pricing outcomes?
- How to introduce nominal rigidities in basic DSGE model?
- Much more tractable to model
- Time-dependent: firms (re-)set prices according to some exogenous
 time interval
 - State-dependent: firms (re-)set prices according to endogenous (potentially firm-specific) state

CANONICAL DSGE STICKY-PRICE MODEL

Cashless environment

Though events of past few years suggest <u>liquidity</u> issues not irrelevant

Ignore money demand altogether (i.e., no CIA, no MIU, no transactions costs)

Woodford (2000): "...effectiveness of monetary policy does not depend on the ability of the central bank to manipulate significant market distortions..."

Nominal prices (hence nominal price level) move sluggishly

Due to some "costs" or other "timing impediments"

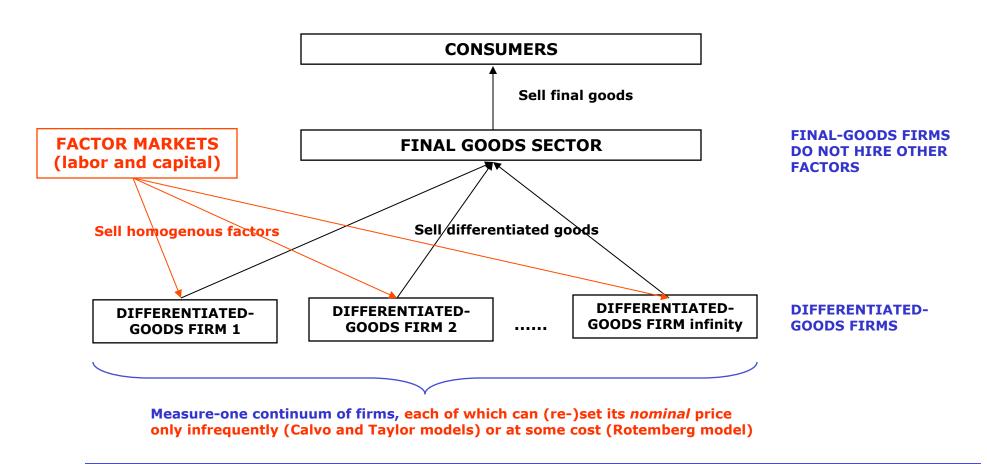
Built on Dixit-Stiglitz foundation

- **Infrequent (re-)setting of price requires imperfect competition**
- **D-S framework readily tractable in DSGE environment**

Common sticky-price mechanisms

- **Calvo-Yun:** firm receives exogenous "signal" to re-optimize price
- **Taylor:** firm can re-optimize price every *T* periods
- Rotemberg: firm can re-optimize price every period, but subject to a quadratic "menu cost"

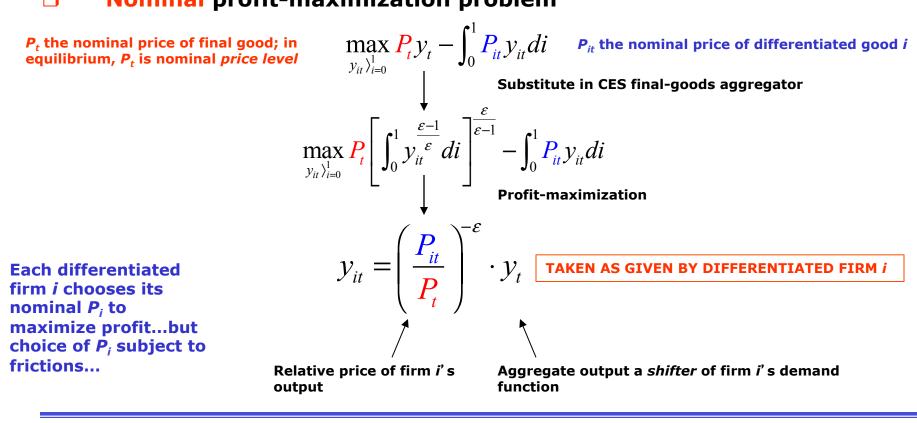
CANONICAL DSGE STICKY-PRICE MODEL



FINAL-GOODS FIRMS

$$\square \qquad \textbf{Aggregator} \quad y_t = \left[\int_{0}^{1} y_{it} \frac{\varepsilon^{-1}}{\varepsilon} di\right]^{\frac{\varepsilon}{\varepsilon-1}}$$

Nominal profit-maximization problem



Two-stage optimization problem

i.e., total production y_i is simply "read off the demand curve"

Stage 1: Choose optimal nominal P_{it} subject to the pricing friction (Intermediate "stage"): "choose" to produce the y_{it} corresponding to the implied value of P_{it}/P_t

Stage 2: Choose factor inputs to produce y_{it} at minimum cost

D Differentiated producer *i* production technology

$$y_{it} = \overline{z_t f(k_{it}, n_{it})} - \Phi^*$$

Heusl CDC

Assume = 0 as before \rightarrow mc = ac CONSTANT (with respect to quantity)

Dynamic profit maximization problem

Note distinction between $\max_{P_{it}} E_t \left\{ \sum_{s=t}^{\infty} \alpha^{s-t} \Xi_{s|t} \left\{ P_{it} y_{is} - P_s m c_s y_{is} \right\} \right\}$ Exogenous probability of not being able to (re-)set price - the "Calvo fairy"

> >

DIFFERENTIATED-GOODS FIRMS

Dynamic profit maximization problem

Price change opportunities arrive according to Poisson process

$$\max_{P_{it}} E_t \left\{ \sum_{s=t}^{\infty} \alpha^{s-t} \Xi_{s|t} \left\{ P_{it} \left(\frac{P_{it}}{P_s} \right)^{-\varepsilon} y_s - P_s m c_s \left(\frac{P_{it}}{P_s} \right)^{-\varepsilon} y_s \right\} \right\}$$

Rewrite

$$\max_{P_{it}} E_t \left\{ \sum_{s=t}^{\infty} \alpha^{s-t} \Xi_{s|t} \left\{ P_{it}^{1-\varepsilon} P_s^{\varepsilon} - P_{it}^{-\varepsilon} P_s^{1+\varepsilon} mc_s \right\} y_s \right\}$$

First-order condition

$$E_{t}\left\{\sum_{s=t}^{\infty} \boldsymbol{\alpha}^{s-t} \Xi_{s|t}\left[\left(1-\varepsilon\right)\left(\frac{P_{it}}{P_{s}}\right)^{-\varepsilon} y_{s} + \varepsilon\left(\frac{P_{it}}{P_{s}}\right)^{-\varepsilon} y_{s}\left(\frac{P_{it}}{P_{s}}\right)^{-1} mc_{s}\right]\right\} = 0$$

$$\begin{array}{c} \text{Continue}\\ \text{manipulating} \end{array}$$

Optimal-pricing condition

$$E_{t}\left\{\sum_{s=t}^{\infty} \boldsymbol{\alpha}^{s-t} \Xi_{s|t} \left(\frac{P_{it}}{P_{s}}\right)^{-\varepsilon} y_{s}\left[(1-\varepsilon) + \varepsilon \left(\frac{P_{it}}{P_{s}}\right)^{-1} mc_{s}\right]\right\} = 0$$
Rewrite: multiply by -1/ ε

$$E_{t}\left\{\sum_{s=t}^{\infty} \boldsymbol{\alpha}^{s-t} \Xi_{s|t} \left(\frac{P_{it}}{P_{s}}\right)^{-\varepsilon} y_{s}\left[\frac{\varepsilon-1}{\varepsilon} - \left(\frac{P_{it}}{P_{s}}\right)^{-1} mc_{s}\right]\right\} = 0$$
Rewrite: multiply each term by P_{s}/P_{s} and multiply entire expression by P_{it}

$$E_{t}\left\{\sum_{s=t}^{\infty} \boldsymbol{\alpha}^{s-t} \Xi_{s|t} P_{s}\left(\frac{P_{it}}{P_{s}}\right)^{-\varepsilon} y_{s}\left[\frac{\varepsilon-1}{\varepsilon} \frac{P_{it}}{P_{s}} - mc_{s}\right]\right\} = 0$$
Standard static Dixit-Stiglitz pricing condition
If prices are completely flexible $\longrightarrow \frac{P_{it}}{P_{t}} = \frac{\varepsilon}{\varepsilon-1} \cdot mc_{t}$

February 29, 2012

Optimal-pricing condition

$$E_{t}\left\{\sum_{s=t}^{\infty} \alpha^{s-t} \Xi_{s|t} P_{s}\left(\frac{P_{it}}{P_{s}}\right)^{-\varepsilon} y_{s}\left[\frac{\varepsilon-1}{\varepsilon}\frac{P_{it}}{P_{s}} - mc_{s}\right]\right\} = 0$$

Real marginal revenue

- With sticky prices, optimal P_i balances current and future marginal revenues against current and future marginal costs until the next (expected) price re-optimization
- Differentiated firm i's (and hence the aggregate) markup will be time-varying

As inflation erodes the *relative* price of firm *i*

- As "initial marginal revenues" > "initial marginal costs" to balance against "later marginal revenues" < "later marginal costs" See King and Wolman (1999)
- Conduct full non-linear analysis (around distorted steady state)
 "Textbook" New Keynesian analysis is around efficient steady state

Optimal-pricing condition

$$E_t \left\{ \sum_{s=t}^{\infty} \alpha^{s-t} \Xi_{s|t} P_s \left(\frac{P_{it}}{P_s} \right)^{-\varepsilon} y_s \left[\frac{\varepsilon - 1}{\varepsilon} \frac{P_{it}}{P_s} - mc_s \right] \right\} = 0$$

□ Define

$$P_{t}x_{t}^{1} = E_{t}\left\{\sum_{s=t}^{\infty} \alpha^{s-t} \Xi_{s|t}P_{s}\left(\frac{P_{it}}{P_{s}}\right)^{-\varepsilon} y_{s}\frac{\varepsilon-1}{\varepsilon}\frac{P_{it}}{P_{s}}\right\}$$
$$P_{t}x_{t}^{2} = E_{t}\left\{\sum_{s=t}^{\infty} \alpha^{s-t} \Xi_{s|t}P_{s}\left(\frac{P_{it}}{P_{s}}\right)^{-\varepsilon} y_{s}mc_{s}\right\}$$

PDV of nominal marginal revenues until next price change

PDV of nominal marginal costs until next price change

- **Optimal-pricing condition:** $x_t^1 = x_t^2$
 - Emphasizes that optimal P_i balances current and future mr against current and future mc
- **Write** x_t^1, x_t^2 recursively (following SGU (2005 *NBER Macro Annual*))