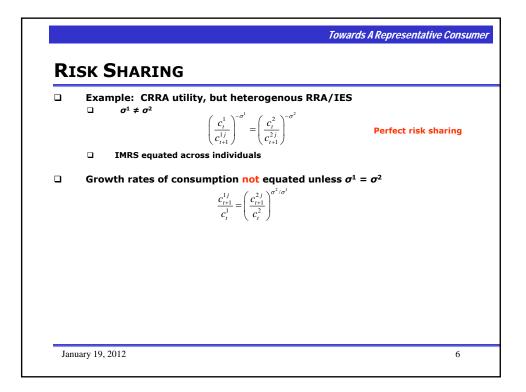
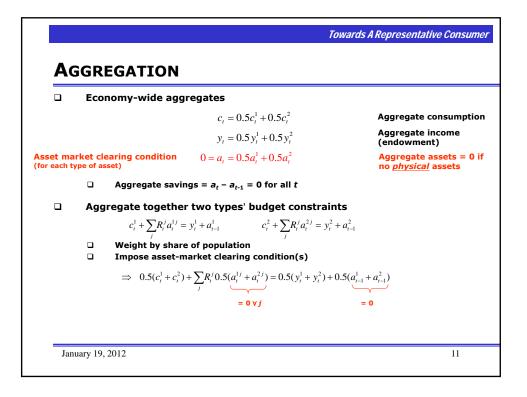

BASICS OF DYNAMIC STOCHASTIC (GENERAL) EQUILIBRIUM

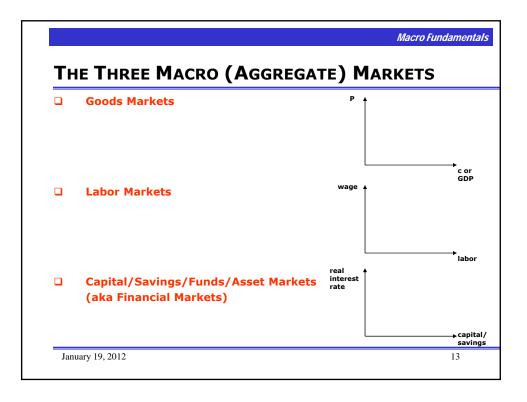

JANUARY 19, 2012

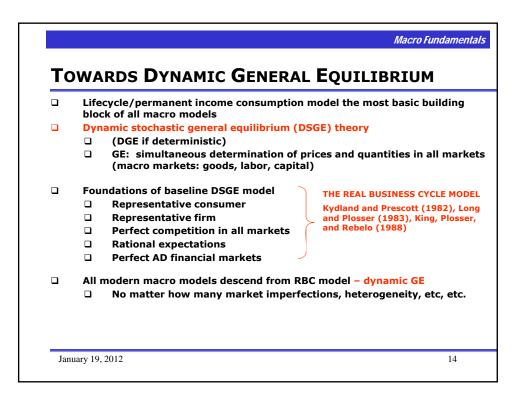
H	ETER	ROGENEITY
	Imp	lementing representative consumer
		An infinity of consumers, each indexed by a point on the unit interval [0,1]
		Each individual is identical in preferences and endowments
		Implies aggregate consumption demand and asset demand
cons		= $\frac{One individual's}{consumption} \times 1$ $\frac{Aggregate}{savings}_{demand}$ = $\frac{One individual's}{savings demand} \times 1$ er some particular types of heterogeneity, a representative-consumer indation of aggregates exists
		Provided complete set of Arrow-Debreu securities exists
	_	Forface complete set of Alfor Debreu securites existion
		to allow individuals to diversify away (insure) their idiosyncratic ris
	_	to allow individuals to diversify away (insure) their idiosyncratic ris sider heterogeneity
	_	
	Con	sider heterogeneity
	Con:	sider heterogeneity In income realizations (from Markov process)

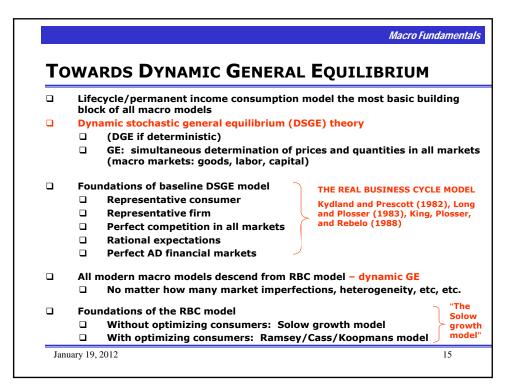
SK SHARING
Two types of individuals, $i \in \{1,2\}$, each with population weight 0.5
$\max E_0 \sum_{t=0}^{\infty} \beta^t u^i(c_t^i) \text{subject to} \ c_t^i + \sum_j R_t^j a_t^{ij} = y_t^i + a_{t-1}^i$
Optimization between period <i>t</i> and state <i>j</i> in period <i>t</i> +1 (conditional on period <i>t</i> outcomes)
$\frac{u_c^1(c_t^1)}{\beta u_c^1(c_{t+1}^{1j})} = \frac{u_c^2(c_t^2)}{\beta u_c^2(c_{t+1}^{2j})}$ In all states at all dates
PERFECT RISK SHARING
 IMRS, for each state j, equated across individuals Individuals experiencing idiosyncratic shocks can insure them away (provided complete markets)
 Risk sharing about equalizing fluctuations of u'(.) across individuals Not about equalizing levels of u'(.) or consumption over time
If initial conditions, period-zero outcomes, and $u(.)$ are identical (e.g., due identical a_0 and realized y_0), then risk sharing \rightarrow identical outcomes for all a_0 \rightarrow A representative consumer

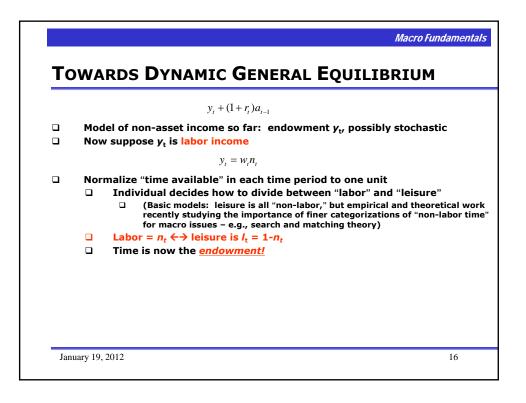


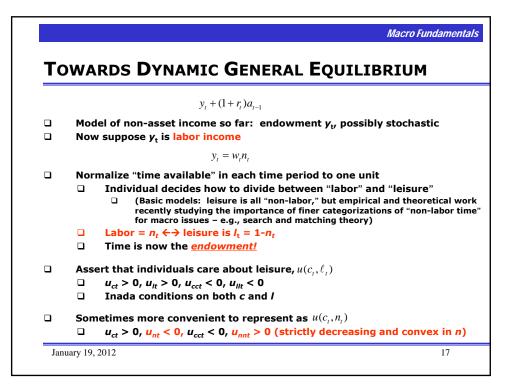
Ac	GREGATION
	Example: CRRA utility, but heterogenous RRA/IES
	IMRS equated across individuals
	Growth rates of consumption not equated unless σ^1 = σ^2
	$rac{c_{_{t+1}}^{1j}}{c_{_{t}}^{1}} \!=\!\!\left(rac{c_{_{t+1}}^{2j}}{c_{_{t}}^{2}} ight)^{\!\sigma^{2}/\sigma^{1}}$
	 Allocations are Pareto-optimal (implied by First Welfare Theorem) All MRS's (across individuals, states, and dates) are equated Even though levels of consumption may differ across individuals No individual can be made better off without making some agent worse off (Pareto welfare concept takes distributions of outcomes as given) Due to complete financial markets
	 Pareto-optimal allocations + heterogeneity of utility functions □ There exists a utility function u(c) in aggregate c = c¹ + c² that leads to the same aggregates (Constantanides (1982)); if CRRA, u(.) has σ ∈ (o¹, σ²)

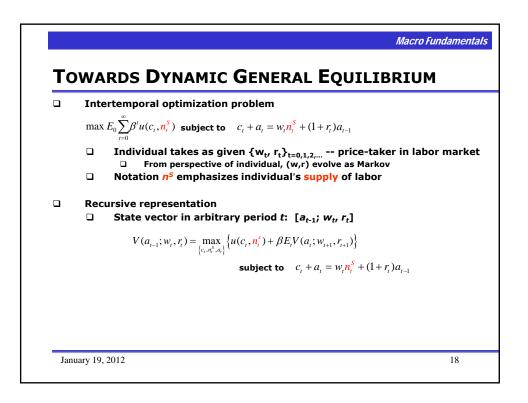

	Now consider <mark>eco</mark>	nomy-wide aggregates	
		$c_t = 0.5c_t^1 + 0.5c_t^2$	Aggregate consumption
		$y_t = 0.5 y_t^1 + 0.5 y_t^2$	Aggregate income (endowment)
(For e	ach type of asset)	$a_t = 0.5a_t^1 + 0.5a_t^2$	Aggregate assets?
		considering assets as claims (st be some tangible asset(s) l	
-	In aggregate, mus	considering assets as claims (<mark>st be some tangible asset(s) l</mark> s in model so far → a _t = <u>0 in a</u>	backing them (gen. equil.)
	In aggregate, mus	st be some tangible asset(s) I	backing them (gen. equil.)
	In aggregate, mus	st be some tangible asset(s) I	backing them (gen. equil.)

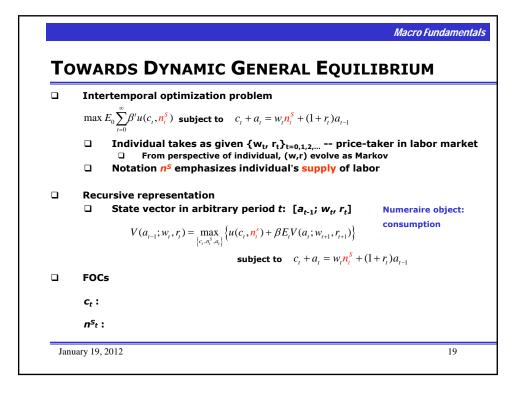

Ac	GGREGATIO		owards A Representative Consun
		conomy-wide aggregates	
		$c_{t} = 0.5c_{t}^{1} + 0.5c_{t}^{2}$	Aggregate consumption
		$y_t = 0.5 y_t^1 + 0.5 y_t^2$	Aggregate income (endowment)
(For e	each type of asset)	$0 = a_t = 0.5a_t^1 + 0.5a_t^2$	Aggregate assets = 0 no <u>physical</u> assets
	So far have bee	n considering assets as claims (paper!) (partial equilibrium
		n considering assets as claims (uust be some tangible asset(s) b	
-	In aggregate, m	,	acking them (gen. equil.)
	In aggregate, m No physical asse	ust be some tangible asset(s) b	acking them (gen. equil.) <u>ggregate</u> for all t !
	In aggregate, m No physical asso Heterogeneous	tust be some tangible asset(s) be the in model so far $\Rightarrow a_t = 0$ in ag	acking them (gen. equil.) <u>ggregate</u> for all t !
	In aggregate, m No physical asso Heterogeneous other Richer models Mediate thro	bust be some tangible asset(s) bust be some tangible asset(s) bust bust bust bust bust bust bust bust	acking them (gen. equil.) <u>ggregate</u> for all t ! lling assets vis-à-vis each ts, etc.
	In aggregate, m No physical asso Heterogeneous other Richer models Mediate thro But only me	The some tangible asset(s) be the some tangible asset(s) be the some tangible asset(s) be the some tangible as the some tangible as t	acking them (gen. equil.) <u>ggregate</u> for all t ! lling assets vis-à-vis each ts, etc. ns in model of financial markets

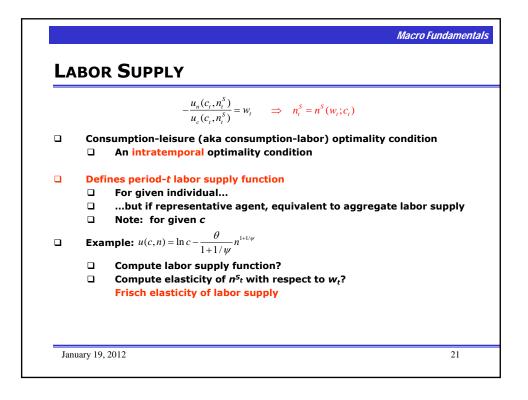

		Towards A Representative Consume
AGGREGATION		
Economy-wide agg	-	
	$c_t = 0.5c_t^1 + 0.5c_t^2$	Aggregate consumption
	$y_t = 0.5 y_t^1 + 0.5 y_t^2$	Aggregate income (endowment)
sset market clearing condition for each type of asset)	$0 = a_t = 0.5a_t^1 + 0.5a_t^2$	Aggregate assets = 0 in no <u>physical</u> assets
Aggregate savin	gs = a, - a, 1 = 0 for all <i>t</i>	
	3 <i>t</i> - <i>t</i> -1	

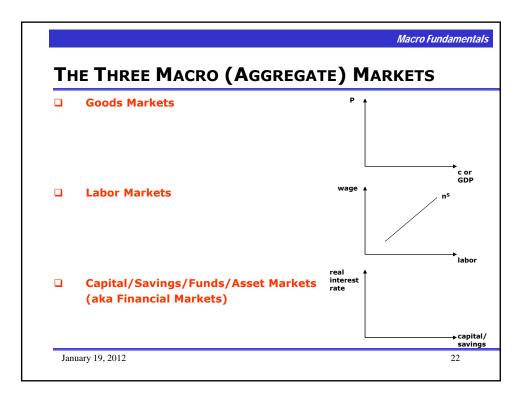


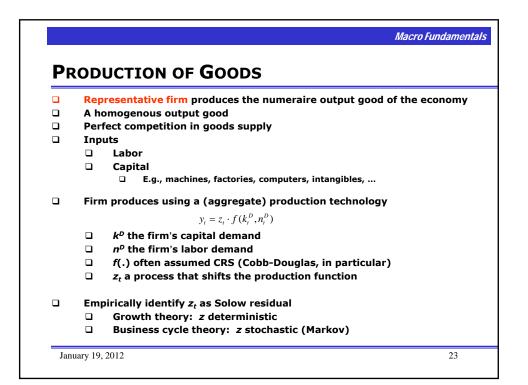

		7	owards A Representative Consume
AG	GREGATION		
	Economy-wide aggi	regates	
		$c_t = 0.5c_t^1 + 0.5c_t^2$	Aggregate consumption
		$y_t = 0.5 y_t^1 + 0.5 y_t^2$	Aggregate income (endowment)
Asset marl (for each typ	ket clearing condition le of asset)	$0 = a_t = 0.5a_t^1 + 0.5a_t^2$	Aggregate assets = 0 if no <i>physical</i> assets
	Aggregate savin	$gs = a_t - a_{t-1} = 0 \text{ for all } t$	
	Aggregate together	two types' budget constrain	nts
	$\int c_t^1 + \sum R_t^j a_t^{1j} =$	$y_t^1 + a_{t-1}^1$ $c_t^2 + \sum R_t^j a_t^{2j} = y_t^2$	$+a_{t-1}^{2}$
general rocedure	U Weight by share	of population	
or onstructing	Impose asset-m	arket clearing condition(s)	
conomy- ≺ vide	$\Rightarrow 0.5(c_t^1 + c_t^2)$	$+\sum_{i} R_{t}^{j} 0.5(a_{t}^{1j} + a_{t}^{2j}) = 0.5(y_{t}^{1} + y_{t}^{2}) +$	$0.5(a_{t-1}^1 + a_{t-1}^2)$
esource onstraint		$= 0 \forall i$	= 0
oods vailable =			Goods market clearing
oods used	l	$\Rightarrow c_t = y_t$	condition – aka resource constraint
	ary 19, 2012		12

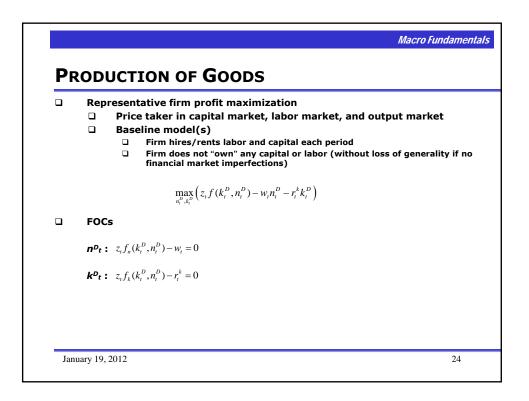


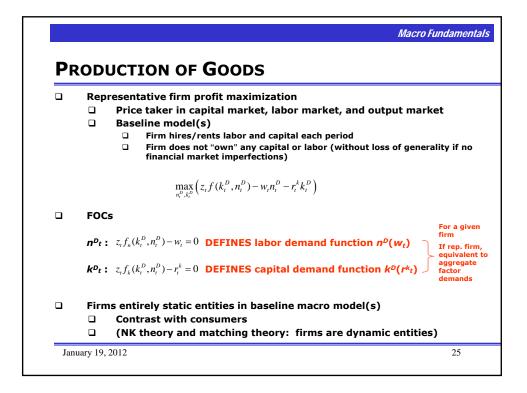


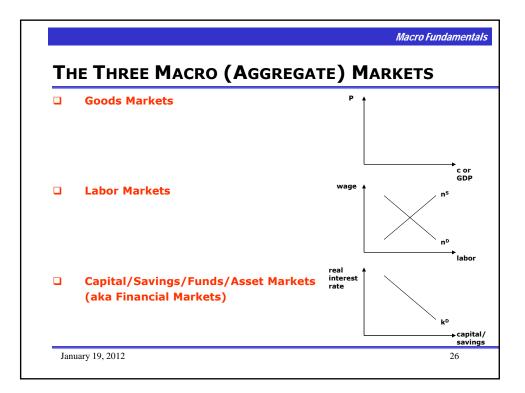


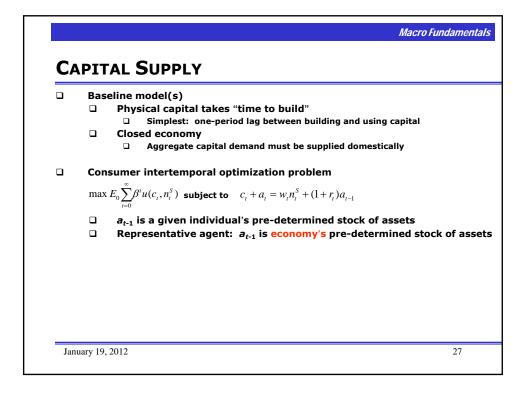


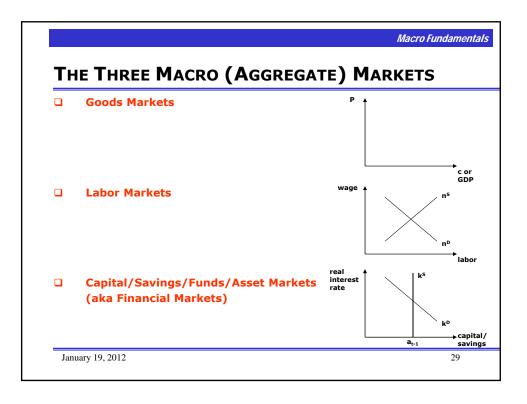


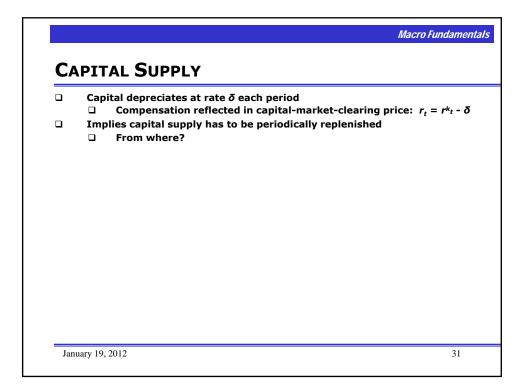


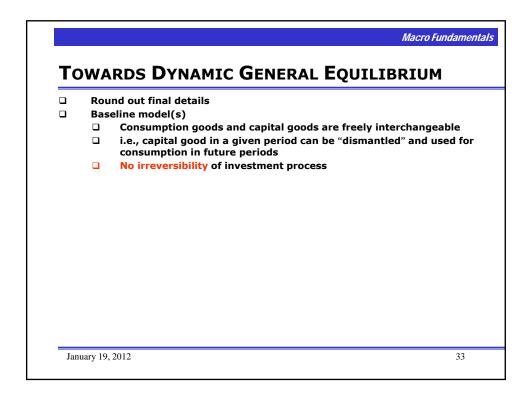

_ABOR SUPPLY	
Intertemporal optimization problem	
$\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, \boldsymbol{n}_t^S) \text{ subject to } c_t + a_t = w_t \boldsymbol{n}_t^S + (1+r_t)a_{t-1}$	
Individual takes as given $\{w_{t}, r_{t}\}_{t=0,1,2,}$ price-taker in labor marke	
 From perspective of individual, (w,r) evolve as Markov Notation n^S emphasizes individual's supply of labor 	
Recursive representation State vector in arbitrary period $t: [a_{t-1}; w_t, r_t]$ Numeraire object:	
consumption	
$V(a_{i-1}; w_i, r_i) = \max_{\{c_i, n_i^s, a_i\}} \left\{ u(c_i, n_i^s) + \beta E_i V(a_i; w_{i+1}, r_{i+1}) \right\}$	
subject to $c_t + a_t = w_t n_t^s + (1+r_t)a_{t-1}$	
FOCs	
$ c_{t}: u_{ct} - \lambda_{t} = 0 n^{s}_{t}: u_{nt} + \lambda_{t} w_{t} = 0 $ $ -\frac{u_{n}(c_{t}, n_{t}^{S})}{u_{c}(c_{t}, n_{t}^{S})} = w_{t} $ $ CONSUMPTION-LEISURE OPTIMALITY CONDITION A static condition $	
$\geq - \frac{w}{w} \equiv W_{i}$ of the condition	

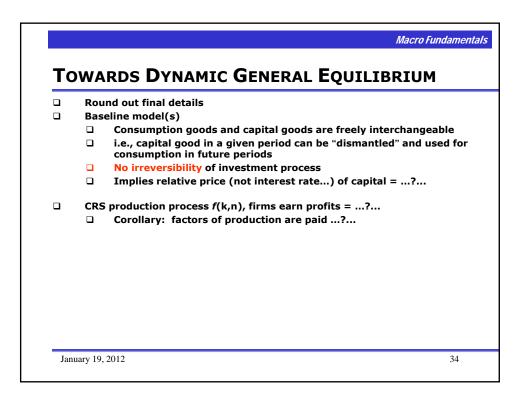


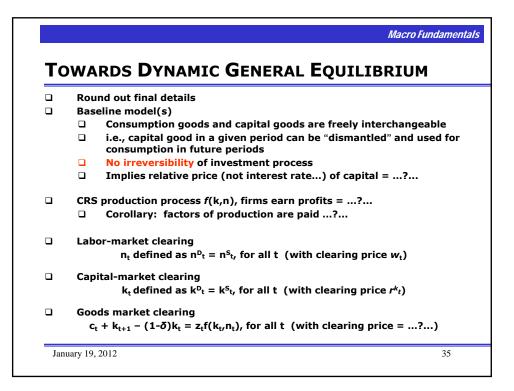


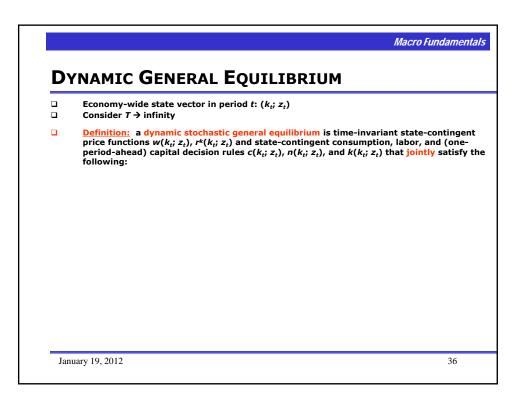


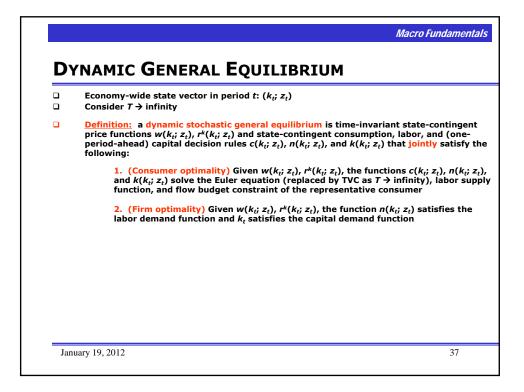


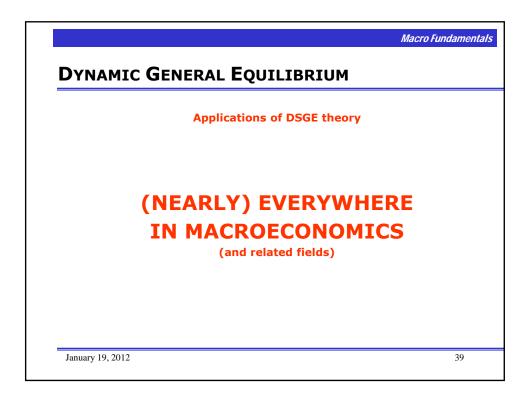

using capital mestically
mestically
mestically
k of assets etermined stock of asse




CA	PITAL SUPPLY	
	Baseline model(s)	
	Physical capital takes "time to build"	
	Simplest: one-period lag between building and using capital	
	Closed economy	
	Aggregate capital demand must be supplied domestically	
	Consumer intertemporal optimization problem	
	$\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, n_t^S) \text{ subject to } c_t + a_t = w_t n_t^S + (1 + r_t) a_{t-1}$	
	\Box a_{t-1} is a given individual's pre-determined stock of assets	
	Representative agent: a_{t-1} is economy's pre-determined st	ock of asset
	Capital-market clearing in each period t	
	$k_t^D = a_{t-1} \left(=k_t^S\right)$	
	Capital depreciates at rate $\pmb{\delta}$ each period	
	Economic depreciation, due to physical wear and tear of pr	oduction
	Not accounting depreciation	
	Compensation reflected in capital-market-clearing price: <i>r</i>	$r_t = r^{k_t} - \delta$




СА	Macro Fundamental
	Capital depreciates at rate δ each period \Box Compensation reflected in capital-market-clearing price: $r_t = r^{k_t} - \delta$ Implies capital supply has to be periodically replenished \Box From where?
	Consumer intertemporal optimization problem $\max E_0 \sum_{t=0}^{\infty} \beta^t u(c_t, n_t^S) \text{ subject to } c_t + a_t = w_t n_t^S + (1 + r_t) a_{t-1}$
	Euler equation $u'(c_i) = \beta E_i \left\{ u'(c_{i+1})(1 + r_{i+1}^k - \delta) \right\}$
	 From perspective of single individual: characterizes optimal savings (flow!) decision between t and t+1 From perspective of entire economy: characterizes optimal investmen (flow!) in capital stock between t and t+1
	Closed economy: domestic savings = domestic investment
	Note timing: savings/investment decisions in <i>t</i> alter the available capital stock in period <i>t</i> +1 ("time to build")



D١	NAMIC GENERAL EQUILIBRIUM
	Economy-wide state vector in period t : $(k_t; z_t)$ Consider $T \rightarrow$ infinity
	<u>Definition</u>: a dynamic stochastic general equilibrium is time-invariant state-contingent price functions $w(k_t; z_t)$, $r^k(k_t; z_t)$ and state-contingent consumption, labor, and (one-period-ahead) capital decision rules $c(k_t; z_t)$, $n(k_t; z_t)$, and $k(k_t; z_t)$ that jointly satisfy t following:
	1. (Consumer optimality) Given $w(k_t; z_t)$, $r^k(k_t; z_t)$, the functions $c(k_t; z_t)$, $n(k_t; z_t)$ and $k(k_t; z_t)$ solve the Euler equation (replaced by TVC as $T \rightarrow$ infinity), labor sup function, and flow budget constraint of the representative consumer
	2. (Firm optimality) Given $w(k_t; z_t)$, $r^k(k_t; z_t)$, the function $n(k_t; z_t)$ satisfies the labor demand function and k_t satisfies the capital demand function
	3. (Markets clear)
	Labor-market clearing
	$n(k_t, z_t)$ defined as $n^{D_t} = n^{S_t}$, for all t
	Capital-market clearing
	k_t defined as $k^{D_t} = k^{S_t}$, for all t
	k_t defined as $k^{D}_t = k^{S}_{t_t}$ for all t Goods market clearing
	k_t defined as $k^{D_t} = k^{S_t}$, for all t

