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DYNAMIC PROGRAMMING

Introduction

Can we represent intertemporal problems recursively?
Rather than sequentially

Benefits
Allows application of series of theorems/results that guarantee a 
solution exists in the space of functions
Allows application of series of theorems/results that help find solution 
in the space of functions
Computational algorithms require it – computers can’t handle infinite-
dimensional objects!

Costs
May rule out some solutions to the original (sequential) problem
Requires (a lot?) more structure on the problem
Sometimes (often?) not obvious how to recast sequential problem as 
recursive problem

Ljungqvist and Sargent (2004, p. 16)
“The art in applying recursive methods is to find a convenient definition of a state.  It is 
often not obvious what the state is, or even whether a finite-dimensional state exists.”
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DYNAMIC PROGRAMMING

Introduction

Can we represent intertemporal problems recursively?
Rather than sequentially

Benefits
Allows application of series of theorems/results that guarantee a 
solution exists in the space of functions
Allows application of series of theorems/results that help find solution 
in the space of functions
Computational algorithms require it – computers can’t handle infinite-
dimensional objects!

Costs
May rule out some solutions to the original (sequential) problem
Requires (a lot?) more structure on the problem
Sometimes (often?) not obvious how to recast sequential problem as 
recursive problem

Start with deterministic case
(Fairly) straightforward
Stochastic case requires more structure
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FROM SEQUENTIAL TO RECURSIVE

Deterministic Dynamic Programming

Lagrangian of consumer problem, with planning horizon T

State variables of consumer problem at beginning of any period s
as-1 (accumulation variable) – the critical one b/c aτ, τ ≥ s, are choices
rs (price-taker)
A sufficient summary of the dynamic position of the environment in 
which the consumer operates
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FROM SEQUENTIAL TO RECURSIVE

Deterministic Dynamic Programming

Lagrangian of consumer problem, with planning horizon T

State variables of consumer problem at beginning of any period s
as-1 (accumulation variable) – the critical one b/c aτ, τ ≥ s, are choices
rs (price-taker)
A sufficient summary of the dynamic position of the environment in 
which the consumer operates

Define V0(a-1, r0;.) as value function starting from period zero
The maximized value of the constrained optimization problem
As function of period-zero parameters of the problem

Goal:  recast problem of finding optimal sequence {ct, at}t=0,1,2,…T 
into problem of finding functions {Vi(.)}t=0,1,2,…T

(Actually, find Vi(.) along with two other functions)
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FROM SEQUENTIAL TO RECURSIVE

Deterministic Dynamic Programming

Write out more explicitly
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FROM SEQUENTIAL TO RECURSIVE

Deterministic Dynamic Programming

Write out more explicitly

Separate terms

Note the 
max inside 
the max

Adjust β factors
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FROM SEQUENTIAL TO RECURSIVE

Deterministic Dynamic Programming

Adjust β
factors
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FROM SEQUENTIAL TO RECURSIVE

Deterministic Dynamic Programming

Adjust β
factors
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≡ V1(a0,r1;.), value function starting from period 1.

The value resulting from optimal decisions starting from 
period 1.

V0(a-1,r0;.) is value function 
starting from period 0.

Bellman Principle of Optimality:
optimal decisions in the initial 
period induce a future state, from 
which (future) decisions are 
optimal (Bellman, 1957)
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Bellman Equation
Can analyze optimization problem for period zero…

…given Bellman Principle of Optimality holds
(But how do V0(.) and V1(.) relate to each other?)

FROM SEQUENTIAL TO RECURSIVE

Deterministic Dynamic Programming

Adjust β
factors

Recursive representation of consumer problem
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≡ V1(a0,r1;.), value function starting from period 1.

The value resulting from optimal decisions starting from 
period 1.

V0(a-1,r0;.) is value function 
starting from period 0.

Bellman Principle of Optimality:
optimal decisions in the initial 
period induce a future state, from 
which (future) decisions are 
optimal (Bellman, 1957)
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Bellman Equation

Starting point for recursive analysis
Applicable to finite T-period or T problems
Construction requires identifying state variables of optimization 
problem

BELLMAN EQUATION

Deterministic Dynamic Programming
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∞
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Bellman Equation

Starting point for recursive analysis
Applicable to finite T-period or T problems
Construction requires identifying state variables of optimization 
problem

T-period problem
Solution involves sequence of functions V0(.), V1(.), … , VT-1(.), VT(.)
Vi(.) functions in general will differ – reflecting time until end of 
planning horizon
E.g., maximized value starting from age = 60 different from maximized 
value starting from age = 30 (intuitively)

Infinite-horizon problem
Deterministic case:  V(.) ≡ Vi(.) = Vj(.) ∀ i,j
Always an infinity of periods left to go

BELLMAN EQUATION

Deterministic Dynamic Programming
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Stochastic case?

Requires more structure…
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Bellman Equation (for T )

Use to characterize optimal decisions
Period-0 FOCs

c0:

a0: How to compute V1(.)?

BELLMAN EQUATION

Deterministic Dynamic Programming
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Bellman Equation (for T )

Use to characterize optimal decisions
Period-0 FOCs

c0:

a0: How to compute V1(.)?

Suppose optimal choice characterized by  c0 = c(a-1;.), a0 = a(a-1;.)
(c(.) and a(.) time-invariant functions in infinite-period problem)

Insert in value function (can now drop max operator)

Now compute marginal

BELLMAN EQUATION

Deterministic Dynamic Programming
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this …

∞
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Bellman Equation (for T )

Now compute marginal (suppress r argument of c(.) and a(.) functions)

BELLMAN EQUATION

Deterministic Dynamic Programming
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Bellman Equation (for T )

Now compute marginal (suppress r argument of c(.) and a(.) functions)

Envelope Theorem
In computing first-order effects of changes in a problem’s parameters
on the maximized value, can ignore how optimal choices will adjust

Intuition:  because already at a max (marginal costs = marginal benefits)

Need only consider the direct effect

BELLMAN EQUATION

Deterministic Dynamic Programming

1 0 0 11  ( , ; (1 ).)V a r rλ −− = +⇒

Note: envelope 
theorem has 
nothing to do 
with dynamic 
programming
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Envelope 
Condition

∞
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Bellman Equation (for T )

Now compute marginal (suppress r argument of c(.) and a(.) functions)

Envelope Theorem
In computing first-order effects of changes in a problem’s parameters
on the maximized value, can ignore how optimal choices will adjust

Intuition:  because already at a max (marginal costs = marginal benefits)

Need only consider the direct effect

BELLMAN EQUATION

Deterministic Dynamic Programming

1 0 0 11  ( , ; (1 ).)V a r rλ −− = +⇒ evaluate at 
period 1 1 0 1 1 0( , ;.) (1 )rV a r λ= +

Note: envelope 
theorem has 
nothing to do 
with dynamic 
programming
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Envelope 
Condition

∞
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Bellman Equation (for T )

Use to characterize optimal decisions

Period-0 FOCs, now evaluated using c(a-1), a(a-1)

c0:

a0:

Env:

BELLMAN EQUATION

Deterministic Dynamic Programming

1 0( ))'( 0u c a λ− − =

1 10 0 1( ( ), . 0; )V a a rλ β −− + =
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Bellman Equation (for T )

Use to characterize optimal decisions

Period-0 FOCs, now evaluated using c(a-1), a(a-1)

c0:

a0:

Env:

Seems like usual Euler equation from sequential analysis 
(deterministic)…

BELLMAN EQUATION

Deterministic Dynamic Programming

1 0( ))'( 0u c a λ− − =
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∞
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DETERMINISTIC – RECURSIVE ANALYSIS

Model Solution

Solution of infinite-horizon consumer problem (starting from date zero)…

…is a consumption decision rule c(a-1;.), asset decision rule a(a-1;.), and 

value function V(a-1;.) that satisfies

Bellman equation

Euler equation

which is the TVC in the limit t :

Budget constraint

taking as given( )1 0 1, ,a r r− −

* *
1 1(l ) ( )im '( ) 0t t

t

t
u c a a aβ − −→∞

⋅ =
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11 1 1'( ( , ;.)()( ) )c a a au V rβ− −= 1 10'( (1( ) ) )(( )')u r uc a c aβ− −+=

1 10 1 1 ( ) () 0)(1 c a ay r aa− − −−+ + − − =

by envelope theorem

∞
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DETERMINISTIC – SEQUENTIAL ANALYSIS

Model Solution

Solution of infinite-horizon consumer problem (starting from date zero)…

is a consumption and asset sequence that satisfies

Sequence of flow budget constraints

Sequence of Euler equations

which is the TVC in the limit t :

taking as given

Does solution to recursive problem coincide with solution to 
sequential problem?

{ }( )1 10
, , ,t ttr y a r∞
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,t t t

c a
∞
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RECURSIVE VS. SEQUENTIAL ANALYSIS

Deterministic Dynamic Programming

Does solution to recursive problem coincide with solution to sequential 
problem?
Does solution to sequential problem coincide with solution to recursive 
problem?

?...In general, no!
No reason why it should!



12

January 25, 2012 23

RECURSIVE VS. SEQUENTIAL ANALYSIS

Deterministic Dynamic Programming

Does solution to recursive problem coincide with solution to sequential 
problem?
Does solution to sequential problem coincide with solution to recursive 
problem?

?...In general, no!
No reason why it should!

In constructing Bellman representation (T case), the imposition of time-
invariant functions c(a), a(a) potentially limits the class of solutions

In original sequential formulation, this is neither explicitly nor implicitly a 
requirement of the solution!

In general (here without proof…)

Solution to the sequential problem is also a solution to the recursive problem

Solution to the recursive problem is also a solution to the sequential problem 
provided some further regularity conditions hold

Stokey, Lucas, Prescott text (1989)

∞
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RECURSIVE VS. SEQUENTIAL ANALYSIS

Dynamic Programming

So why go recursive?

Allows application of series of theorems/results that guarantee a 
solution exists in the space of functions
Allows application of series of theorems/results that help find solution 
in the space of functionsUnderlying 

theory:
Contraction Mapping Theorem, Blackwell’s Sufficient Conditions for a Contraction, Theorem of the Maximum 
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THEORY

Dynamic Programming

Blackwell’s Sufficient Conditions for a Contraction:  Let X be a subset of Rl

and let B(X) be the set of bounded functions f : X R with the sup norm.  Let 
T : B(X) B(X) be an operator satisfying

a.  (Monotonicity)  f,g ∈ B(X) and f(x) ≤ g(x), for all x ∈ X, implies (Tf)(x) ≤ (Tg)(x), for 
all x ∈ X

b.  (Discounting)  There exists some β ∈ (0,1) such that

[T(f+a)](x) ≤ (Tf)(x) + βa, for all f ∈ B(X), a ≥ 0, x ∈ X

Then T is a contraction with modulus β.

(Note: (f+a)(x) is the function defined by (f+a)(x) = f(x) + a)
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THEORY

Dynamic Programming

Let (S, ρ) be a metric space and T : S S be a function mapping set S into 
itself.  T is a contraction mapping (with modulus β) if for some β ∈ (0,1), 
ρ(Tx, Ty) ≤ βρ(x, y) for all x, y ∈ S.
Example:  S = [a, b] with ρ(x, y) = |x – y| (Euclidean norm)

Contraction Mapping Theorem: If (S, ρ) is a metric space and T : S S is a 
contraction mapping with modulus β, then
a.  T has exactly one fixed point v in set S.
b.  For any v0 ∈ S, ρ(Tnv0, v) ≤ βρ(x, y) for n = 0, 1, 2, …

CMT states that a contraction mapping has a unique fixed point, and the 
fixed point can be found by iterative application of the mapping T starting 
starting from any point in S.
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THEORY

Dynamic Programming

General class of problems to which our (usual) economic optimization 
problems belong have the form

(Tv)(x) = supy∈Γ(x) [F(x,y) + βv(y)]

For our economic theory:  would like operator T to map the space C(X) of 
bounded continuous functions of the state vector into itself.  Would also like 
to be able to characterize the set of maximizing values of y given x.
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THEORY

Dynamic Programming

General class of problems to which our (usual) economic optimization 
problems belong have the form

(Tv)(x) = supy∈Γ(x) [F(x,y) + βv(y)]

For our economic theory:  would like operator T to map the space C(X) of 
bounded continuous functions of the state vector into itself.  Would also like 
to be able to characterize the set of maximizing values of y given x.

Theorem of the Maximum:  Let X be a subset of Rl, Y be a subset of Rm, 
let f : X x Y R be a (single-valued) continuous function, and let Γ : X Y be 
a compact-valued and continuous correspondence.  The problem we are 
interested in is of the form supy ∈ Γ(x) f(x,y).  Then

a. sup can be replaced with max because, for each x, the maximum is attained and 
the function h(x) = maxy ∈ Γ(x) f(x,y) is well defined and continuous

b. The correspondence G(x) = y ∈ Γ(x) : f(x,y) = h(x) is well defined, is non-empty, is 
compact-valued, and upper hemi-continuous.

Theorem of the Maximum establishes the existence of the maximum of the 
problem.
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THEORY

Dynamic Programming

Suppose in addition to the hypotheses of the Theorem of the Maximum, the 
correspondence Γ is convex-valued and the function f is strictly concave in y.  

Then G is single-valued.  Call this function g, and g is continuous.

Establishes that, given these conditions and given the unique solution of the 
Bellman Equation, there is a unique g that is the optimal “decision rule.”

If {fn(x,y)} is a sequence of continuous functions converging to f(x,y), each 
strictly concave in y, then the sequence of functions {gn(x)} (which are the 
argmax of the sequence {fn(x,y)}) converges pointwise to g(x), which is the 
argmax of f(x,y).

The latter result is very useful considered in the context of the Contraction 
Mapping Theorem.  It guarantees that the solutions to the sequence of 
problems converges to the true solution. 
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RECURSIVE VS. SEQUENTIAL ANALYSIS

Dynamic Programming

So why go recursive?

Allows application of series of theorems/results that guarantee a 
solution exists in the space of functions
Allows application of series of theorems/results that help find solution 
in the space of functions

Computational algorithms require it – computers can’t handle infinite-
dimensional objects!

Soon: simple computational algorithms

Can’t really “choose” whether want to analyze problem 
sequentially or recursively

All but the most limited of problems/models require computational solution
In which case model analysis is recursive

What about stochastic dynamic programming?
Even more structure required….

Contraction Mapping Theorem, Blackwell’s Sufficient Conditions for a Contraction, Theorem of the Maximum 

Underlying 
theory:
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STOCHASTIC DYNAMIC PROGRAMMING

Introduction

Even more structure required on the problem to recursively solve  
dynamic stochastic optimization problems

Main (new) technical problem
Branching of event tree at each of T periods (possibly T )

Main technical solution/assumption
Assume risk follows Markov process
Which enables series of theorems/results from deterministic dynamic 
programming to work in stochastic case…
…given further technical regularity assumptions

∞


