INTERTEMPORAL MODELS: BASICS OF DYNAMIC PROGRAMMING

JANUARY 25, 2012

Be		ATION	
	Bellman Equat	ion	
V^0	$(a_{-1}, r_0; .) \equiv \max_{c_0, a_0} \left\{ a_{-1}, a$	$u(c_0) + \lambda_0 (y_0 + (1 + r_{-1})a_{-1} - c_0)$	$-a_0\big)+\beta\cdot V^1(a_0,r_1;.)\big\}$
	Starting po	int for recursive analysis	
	Applicable 6	to finite <i>T</i> -period or $T \rightarrow \infty$ problem	ms
	Construction problem	n requires identifying <mark>state varia</mark>	ibles of optimization
	T-period probl	em	
	Solution in	volves sequence of functions V ^o (.), V ¹ (.), , V ^{T-1} (.), V ^T (.)
	V ⁱ (.) function planning here	ons in general will differ – reflect orizon	ing time until end of
	E.g., maxim value starti	ized value starting from age = 6 ng from age = 30 (intuitively)	0 different from maximize
	Infinite-horizo	n problem	
	Determinis	tic case: $V(.) \equiv V^i(.) = V^j(.) \forall i,j$	Stochastic case?
		afinites of movie do left to me	Requires more structure

	Deterministic Dynamic Programming
BE	LLMAN EQUATION
	Bellman Equation (for $T \rightarrow \infty$)
V($[a_{-1}, r_0; .) \equiv \max_{c_0, a_0} \left\{ u(c_0) + \lambda_0 \left(y_0 + (1 + r_{-1})a_{-1} - c_0 - a_0 \right) + \beta \cdot V(a_0, r_1; .) \right\}$
	Use to characterize optimal decisions Period-0 FOCs
	$\boldsymbol{c_0:} \boldsymbol{u'}(\boldsymbol{c_0}) - \boldsymbol{\lambda_0} = \boldsymbol{0}$
	$a_0: -\lambda_0 + \beta V_1(a_0, r_1; .) = 0$ How to compute $V_1(.)$?
Leturn to his	<u>Suppose</u> optimal choice characterized by $c_0 = c(a_{-1};.), a_0 = a(a_{-1};.)$ ($c(.)$ and $a(.)$ time-invariant functions in infinite-period problem) Insert in value function (can now drop max operator)
V	$V(a_{-1}, r_0; .) \equiv u(c(a_{-1})) + \lambda_0 \left(y_0 + (1 + r_{-1})a_{-1} - c(a_{-1}) - a(a_{-1}) \right) + \beta \cdot V(a(a_{-1}), r_1; .)$
	Now compute marginal
Janu	hary 25, 2012 14

Let (S, ρ) be a metric space and $T: S \rightarrow S$ be a function mapping set S into itself. T is a contraction mapping (with modulus β) if for some $\beta \in (0,1)$, $\rho(Tx, Ty) \leq \beta\rho(x, y)$ for all $x, y \in S$.
$\mathbf{F}_{\mathbf{r}} = \mathbf{F}_{\mathbf{r}} + $
Example: $S = [a, b]$ with $p(x, y) = x - y $ (Euclidean norm)
Contraction Mapping Theorem: If (S, ρ) is a metric space and $T: S \rightarrow S$ is a contraction mapping with modulus β , then
a. T has exactly one fixed point v in set S. b. For any $v_0 \in S$, $\rho(T^n v_0, v) \leq \beta \rho(x, y)$ for $n = 0, 1, 2,$
CMT states that a contraction mapping has a unique fixed point, and the fixed point can be found by iterative application of the mapping <i>T</i> starting starting from any point in <i>S</i> .

	Dynamic Programmin
T۲	IEORY
	General class of problems to which our (usual) economic optimization problems belong have the form
	$(Tv)(x) = \sup_{y \in I(x)} \left[F(x,y) + \beta v(y) \right]$
	For our economic theory: would like operator T to map the space $C(X)$ of bounded continuous functions of the state vector into itself. Would also lik to be able to characterize the set of maximizing values of y given x .
Jan	uary 25, 2012 27

T۲	IEORY	
	General class of problems to which our (usual) economic optimization problems belong have the form	
	$(T\nu)(x) = \sup_{y \in I(x)} [F(x,y) + \beta v(y)]$	
	For our economic theory: would like operator T to map the space $C(X)$ of bounded continuous functions of the state vector into itself. Would also lik to be able to characterize the set of maximizing values of y given x .	
	Theorem of the Maximum: Let X be a subset of R^i , Y be a subset of R^m , let $f: X \times Y \rightarrow R$ be a (single-valued) continuous function, and let $\Gamma: X \rightarrow Y$ l a compact-valued and continuous correspondence. The problem we are interested in is of the form $\sup_{y \in \Gamma(x)} f(x, y)$. Then	
	a. sup can be replaced with max because, for each x, the maximum is attained and	
	b. The correspondence $G(x) = y \in \Gamma(x)$ $f(x,y)$ is well defined and continuous compact-valued, and upper hemi-continuous.	
	Theorem of the Maximum establishes the <mark>existence</mark> of the maximum of the problem.	
Terr		

Тч	Dynamic Programi	
	Suppose in addition to the hypotheses of the Theorem of the Maximum, t correspondence Γ is convex-valued and the function f is strictly concave i	
	\rightarrow Then G is single-valued. Call this function g, and g is continuous.	
	Establishes that, given these conditions and given the unique solution of Bellman Equation, there is a unique <i>g</i> that is the optimal "decision rule."	
	If $\{f_n(x,y)\}$ is a sequence of continuous functions converging to $f(x,y)$, eastrictly concave in y, then the sequence of functions $\{g_n(x)\}$ (which are t argmax of the sequence $\{f_n(x,y)\}$) converges pointwise to $g(x)$, which is argmax of $f(x,y)$.	
	The latter result is very useful considered in the context of the Contrac Mapping Theorem. It guarantees that the solutions to the sequence of problems converges to the true solution.	

	Dynamic Programm	ning
RE	CURSIVE VS. SEQUENTIAL ANALYSIS	
	So why go recursive?	
	Allows application of series of theorems/results that guarantee a solution exists in the space of functions	
nderlying	Allows application of series of theorems/results that help find soluti in the space of functions	on
ontraction	Mapping Theorem, Blackwell's Sufficient Conditions for a Contraction, Theorem of the Maximum	
	Computational algorithms require it – computers can't handle infinit dimensional objects!	e-
	Soon: simple computational algorithms	
	Can't really "choose" whether want to analyze problem sequentially or recursively	
	 All but the most limited of problems/models require computational solution In which case model analysis is recursive 	
	What about stochastic dynamic programming?	
	Even more structure required	
Jan	ary 25, 2012 30	

