BASICS OF DYNAMIC PROGRAMMING (CONTINUED)

JANUARY 26, 2012

Macro Fundamentals **RECURSIVE REPRESENTATION State variables** A sufficient summary, as of the start of period t, of the dynamic position of the environment in which the maximizing agent operates "Environment" of the agent - what needs to be known in order to optimize in period t? ☐ Individual-specific quantities Important: states can be The usual Market prices endogenous or exogenous suspects Government policies (Fixed structural parameters - will omit from state vector for parsimony) Ljungqvist and Sargent (2004, p. 16) "The art in applying recursive methods is to find a convenient definition of a state. It is often not obvious what the state is, or even whether a finite-dimensional state exists." January 26, 2012

Macro Fundamentals

It, of the dynamic imizing agent operates be known in order to int: states can be lous or exogenous state vector for parsimony) intities, prices, govt optimize in period t

RECURSIVE REPRESENTATION

State variables

- $\ \square$ A sufficient summary, as of the start of period t, of the dynamic position of the environment in which the maximizing agent operates
- "Environment" of the agent what needs to be known in order to optimize in period t?

The usual suspects

- ☐ Individual-specific quantities ☐ Important: states can be endogenous or exogenous
- □ Government policies
 □ (Fixed structural parameters will omit from state vector for parsimony)
- "Sufficient" there are no other objects (quantities, prices, govt policies, etc.) that must be known in order to optimize in period t
- □ Concept well-defined for both finite-T and $T \rightarrow \infty$ problems
- ☐ KEY: Period-*t* decisions are function of the period-*t* state variables
- ☐ Ljungqvist and Sargent (2004, p. 16)

"The art in applying recursive methods is to find a convenient definition of a state. It is often not obvious what the state is, or even whether a finite-dimensional state exists."

January 26, 2012

3

Deterministic Dynamic Programming

BELLMAN EQUATION

□ Bellman Equation

$$V^{0}(a_{-1}, r_{0}; .) = \max_{c_{0}, a_{0}} \left\{ u(c_{0}) + \lambda_{0} \left(y_{0} + (1 + r_{-1}) a_{-1} - c_{0} - a_{0} \right) + \beta \cdot V^{1}(a_{0}, r_{1}; .) \right\}$$

- □ Starting point for recursive analysis
- □ Applicable to finite *T*-period or $T \rightarrow \infty$ problems
 - Construction requires identifying state variables

□ *T*-period problem

- □ Solution involves sequence of functions $V^0(.)$, $V^1(.)$, ..., $V^{T-1}(.)$, $V^T(.)$
- □ V(.) functions in general will differ reflecting time until end of planning horizon
- E.g., maximized value starting from age = 60 different from maximized value starting from age = 30 (intuitively)

☐ Infinite-horizon problem ("stationary" environment)

- □ Deterministic case: $V(.) \equiv V'(.) = V(.) \forall i,j$
- ☐ Always an infinity of periods left to go

January 26, 2012

BELLMAN EQUATION

□ Bellman Equation (for $T \rightarrow \infty$)

$$V(a_{-1}, r_0; .) = \max_{c_0, a_0} \left\{ u(c_0) + \lambda_0 \left(y_0 + (1 + r_{-1}) a_{-1} - c_0 - a_0 \right) + \beta \cdot V(a_0, r_1; .) \right\}$$

- ☐ Use to characterize optimal decisions
- Period-0 FOCs, evaluated using time-invariant $c(a_{-1})$, $a(a_{-1})$

$$c_{o}: \quad u'(c(a_{-1})) - \lambda_{0} = 0$$

$$a_{o}: \quad -\lambda_{0} + \beta V_{1}(a_{0}(a_{-1}), r_{1}; .) = 0$$

$$e \quad u'(c(a_{-1})) = \beta(1 + r_{0})u'(c(a_{0}))$$

$$e \quad v_{1}(a(a_{-1}), r_{1}; .) = \lambda_{1}(1 + r_{0})$$

□ Seems like usual Euler equation from sequential analysis (deterministic)...

January 26, 2012

5

Notation

BELLMAN EQUATION

□ Bellman Equation (for $T \rightarrow \infty$)

$$V(a_{-1}, r_0; .) \equiv u(c(a_{-1})) + \lambda_0 \left(y_0 + (1 + r_{-1})a_{-1} - c(a_{-1}) - a(a_{-1}) \right) + \beta \cdot V(a(a_{-1}), r_1; .)$$

- □ Seems like a two-period problem
 - ☐ In terms of (value) functions, not in terms of choice variables
 - □ Optimize in current period
 - □ Optimize next period (Bellman's Principle of Optimality)

January 26, 2012

Notation

BELLMAN EQUATION

□ Bellman Equation (for $T \rightarrow \infty$)

$$V(a_{-1}, r_0; .) \equiv u(c(a_{-1})) + \lambda_0 \left(y_0 + (1 + r_{-1})a_{-1} - c(a_{-1}) - a(a_{-1}) \right) + \beta \cdot V(a(a_{-1}), r_1; .)$$

- Seems like a two-period problem
 - ☐ In terms of (value) functions, not in terms of choice variables
 - Optimize in current period
 - Optimize next period (Bellman's Principle of Optimality)
- □ Common notation
 - Use x for current-period variables
 - Use x' for next-period variables
- □ Bellman Equation

$$V(a,r;.) \equiv u(\underbrace{c(a)}) + \lambda \left(y + (1+r_{-1})a - \underbrace{c(a)} - \underbrace{a(a)} \right) + \beta \cdot V(\underbrace{a(a)}, r';.)$$

$$= c \qquad = a' \qquad = a'$$

☐ Euler equation

January 26, 2012

7

Dynamic Programming

RECURSIVE VS. SEQUENTIAL ANALYSIS

- □ So why go recursive?
 - Allows application of series of theorems/results that guarantee a solution exists in the space of functions

Allows application of series of theorems/results that help find solution in the space of functions

Theory:
Contraction Mapping Theorem, Blackwell's Sufficient Conditions for a Contraction, Theorem of the Maximum

- □ Suppose *V*(.) exists
- \square Procedure for finding V(.) and associated decision rules: iterate on Bellman Equation starting from any arbitrary initial guess

January 26, 2012

Dynamic Programming

RECURSIVE VS. SEQUENTIAL ANALYSIS

- So why go recursive?
 - Allows application of series of theorems/results that guarantee a solution exists in the space of functions
 - Allows application of series of theorems/results that help find solution in the space of functions

Theory: Contraction Mapping Theorem, Blackwell's Sufficient Conditions for a Contraction, Theorem of the Maximum

Suppose V(.) exists

Underlying

Procedure for finding V(.) and associated decision rules. Equation starting from any arbitrary initial guess – call it V(.) initial guess (some parametric form) Procedure for finding V(.) and associated decision rules: iterate on Bellman

$$V(a,r;.) \equiv \max_{c,a'} \left\{ u(c) + \lambda \left(y + (1+r)a - c - a' \right) + \beta \cdot V^{1}(a',r';.) \right\}$$

January 26, 2012

Dynamic Programming

RECURSIVE VS. SEQUENTIAL ANALYSIS

- So why go recursive?
 - Allows application of series of theorems/results that guarantee a solution exists in the space of functions
- Allows application of series of theorems/results that help find solution in the space of functions Underlying

Theory:

Contraction Mapping Theorem, Blackwell's Sufficient Conditions for a Contraction, Theorem of the Maximum

- Suppose V(.) exists
- Procedure for finding V(.) and associated decision rules: iterate on Bellman Equation starting from any arbitrary initial guess – call it $V^1(.)$

initial guess (some parametric form)

$$V(a,r;.) \equiv \max_{c,a'} \left\{ u(c) + \lambda \left(y + (1+r)a - c - a' \right) + \beta \cdot V^{1}(a',r';.) \right\}$$

$$\bigcirc \quad \text{Conduct maximization}$$

- - \Box Gives functions c(a) and a(a)
 - These are candidate (optimal) decision rules
- Insert candidate c(a) and a(a) into RHS of Bellman Equation generates $V^2(.)$

Dynamic Programming

RECURSIVE VS. SEQUENTIAL ANALYSIS

- ☐ So why go recursive?
 - Allows application of series of theorems/results that guarantee a solution exists in the space of functions
- Allows application of series of theorems/results that help find solution in the space of functions

Contraction Mapping Theorem, Blackwell's Sufficient Conditions for a Contraction, Theorem of the Maximum

- □ Suppose V(.) exists
- \square Procedure for finding V(.) and associated decision rules: iterate on Bellman Equation starting from any arbitrary initial guess call it $V^1(.)$

initial guess (som parametric form)

$$V(a,r;.) = \max_{c,a'} \left\{ u(c) + \lambda \left(y + (1+r)a - c - a' \right) + \beta \cdot V^{1}(a',r';.) \right\}$$

- 2 Conduct maximization
 - \Box Gives functions c(a) and a(a)
 - ☐ These are candidate (optimal) decision rules
 - Insert candidate c(a) and a(a) into RHS of Bellman Equation generates $V^2(.)$

Does $V^2(.) = V^1(.)$?

January 26, 2012

Dynamic Programming

11

RECURSIVE VS. SEQUENTIAL ANALYSIS

- □ So why go recursive?
 - Allows application of series of theorems/results that guarantee a solution exists in the space of functions

 $\begin{tabular}{ll} \square & Allows application of series of theorems/results that help find solution in the space of functions \\ \end{tabular}$

Theory:

Contraction Mapping Theorem, Blackwell's Sufficient Conditions for a Contraction, Theorem of the Maximum

- □ Suppose *V*(.) exists
- \square Procedure for finding V(.) and associated decision rules: iterate on Bellman Equation starting from any arbitrary initial guess call it $V^1(.)$

initial guess (some parametric form)

 $V(a,r;.) = \max_{c,a'} \left\{ u(c) + \lambda \left(y + (1+r)a - c - a' \right) + \beta \cdot V^{1}(a',r';.) \right\}$ Conduct maximization

If no, insert $V^2(.)$ on RHS and repeat

- ☐ These are candidate (optimal) decision rules

Insert candidate c(a) and a(a) into RHS of Bellman Equation – generates $V^2(.)$

Does $V^2(.) = V^1(.)$? If yes, stop. Have found $V(.) (= V^2(.) = V^1(.))$

January 26, 2012 12

Dynamic Programming

RECURSIVE VS. SEQUENTIAL ANALYSIS

- So why go recursive?
- Allows application of series of theorems/results that guarantee a solution exists in the space of functions
- Allows application of series of theorems/results that help find solution Underlying in the space of functions

Contraction Mapping Theorem, Blackwell's Sufficient Conditions for a Contraction, Theorem of the Maximum

e.g., value iteration

- Computational algorithms require it computers can't handle infinitedimensional objects!
 - Soon: simple computational algorithms
- Can't "choose" whether to analyze problem sequentially or recursively
 - All but the most limited of problems require computational solution
 - In which case model analysis is recursive

January 26, 2012

Dynamic Programming

RECURSIVE VS. SEQUENTIAL ANALYSIS

- So why go recursive?
 - Allows application of series of theorems/results that guarantee a solution exists in the space of functions

Allows application of series of theorems/results that help find solution in the space of functions Underlying

Theory:
Contraction Mapping Theorem, Blackwell's Sufficient Conditions for a Contraction, Theorem of the Maximum

e.g., value function iteration

- Computational algorithms require it computers can't handle infinitedimensional objects!
 - Soon: simple computational algorithms
- Can't "choose" whether to analyze problem sequentially or recursively
 - All but the most limited of problems require computational solution
 - In which case model analysis is recursive
- "Solving model sequentially"
 - $u(c_t) = \beta(1+r_t)u'(c_{t+1})$ Doesn't seem recursive...
 - Imposing recursivity on solution ...but computational implementation requires time-invariant decision rule

 $u(c(a_{t-1})) = \beta(1+r_t)u'(c(a_t))$

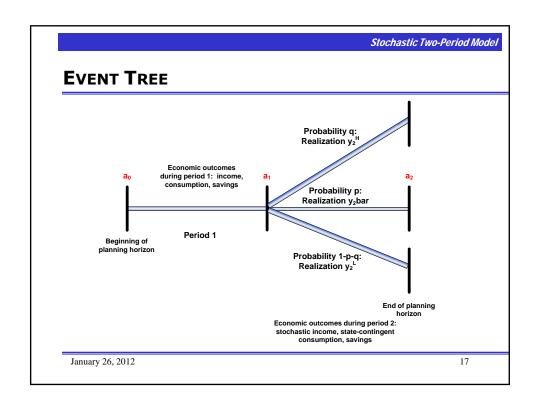
		Dynamic Programming	
RE	CUI	RSIVE VS. SEQUENTIAL ANALYSIS	
Underlying	So why go recursive?		
		Allows application of series of theorems/results that guarantee a solution exists in the space of functions Allows application of series of theorems/results that help find solution in the space of functions	
Theory: Contraction	Mappin	g Theorem, Blackwell's Sufficient Conditions for a Contraction, Theorem of the Maximum	
e.g., value function iteration		Computational algorithms require it – computers can't handle infinite-dimensional objects! □ Soon: simple computational algorithms	
	Can't "choose" whether to analyze problem sequentially or recursively		
		All but the most limited of problems require computational solution In which case model analysis is recursive	
	What about stochastic dynamic programming?		
		Even more structure required	
		The key assumption is Markov risk	
Janu	ary 26,	2012 15	

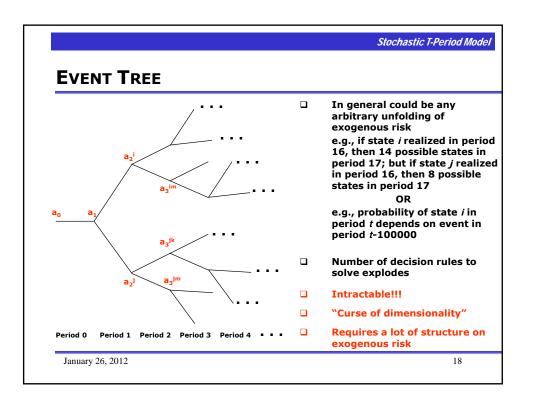
Introduction

STOCHASTIC DYNAMIC PROGRAMMING

- □ Even more structure required on the problem to recursively solve dynamic stochastic optimization problems
- ☐ Main (new) technical problem
 - □ Branching of event tree at each of T periods (possibly $T \rightarrow \infty$)
- □ Main technical solution/assumption
 - ☐ Assume risk follows Markov process
 - Which enables series of theorems/results from deterministic dynamic programming to work in stochastic case...
 - ...given further technical regularity assumptions

January 26, 2012





Macro Fundamentals

RISK STRUCTURE

Assumptions

☐ Set of realizations of exogenous state variable is independent of date

$$S2 = S3 = S4 = S5 = = ST-1 = ST$$

January 26, 2012

19

Macro Fundamentals

RISK STRUCTURE

Assumptions

- ☐ Set of realizations of exogenous state variable is independent of date
- Probability of realization of exogenous state variable in period t depends only on outcomes in period t-1
 - Suppose X_t is a stochastic process and X_t is a particular realization
 - X_t is a Markov process if

$$\begin{split} \Pr \left({{X_t} = {x_t}\left| {\left| {{X_{t - 1}} = {x_{t - 1}},{X_{t - 2}} = {x_{t - 2}},{X_{t - 3}} = {x_{t - 3}},....,{X_{t - 10000}} = {x_{t - 10000}},....} \right)} \\ = \Pr \left({{X_t} = {x_t}\left| {\left| {{X_{t - 1}} = {x_{t - 1}}} \right.} \right.} \right) \\ \text{ CONDITIONAL probability depends on only } \text{ } t\text{-}1} \\ \end{split}$$

January 26, 2012

RISK STRUCTURE

Assumptions

- Set of realizations of exogenous state variable is independent of date
- Probability of realization of exogenous state variable in period t depends only on outcomes in period t-1
 - □ Suppose X_t is a stochastic process and X_t is a particular realization
 - \square X_t is a Markov process if

$$\begin{split} \Pr \big(X_{t} = x_{t} \mid X_{t-1} = x_{t-1}, X_{t-2} = x_{t-2}, X_{t-3} = x_{t-3},, X_{t-10000} = x_{t-10000}, \big) \\ = \Pr \big(X_{t} = x_{t} \mid X_{t-1} = x_{t-1} \big) & \text{CONDITIONAL probability depends on only t-1} \end{split}$$

- Not as restrictive as it may seem could have finite lags in process
- □ E.g.
- Just can't have infinite lags (in principle) or "too many" (finite) lags (in computational practice)

January 26, 2012 21

Macro Fundamentals

RISK STRUCTURE

Assumptions

- ☐ Set of realizations of exogenous state variable is independent of date
- Probability of realization of exogenous state variable in period t depends only on outcomes in period t-1
 - Suppose X_i , is a stochastic process and X_i is a particular realization
 - X_t is a Markov process if

$$\begin{split} \Pr \left({{X_t} = {x_t}\left| {\left| {{X_{t - 1}} = {x_{t - 1}},{X_{t - 2}} = {x_{t - 2}},{X_{t - 3}} = {x_{t - 3}},....,{X_{t - 10000}} = {x_{t - 10000}},....} \right)} \\ = \Pr \left({{X_t} = {x_t}\left| {\left| {{X_{t - 1}} = {x_{t - 1}}} \right|} \right.} \right) \\ \text{CONDITIONAL probability depends on only t-1} \end{split}$$

- ☐ Not as restrictive as it may seem could have finite lags in process
- □ Exogenous state variable is Markov process + assumption/result that decision rules are time-invariant (for $T \rightarrow \infty$) functions of state variables
 - ⇒ Endogenous processes are Markov given several regularity assumptions

Underlying theory: Stokey, Lucas, Prescott (1989, Chapters 8-12)

January 26, 2012

STOCHASTIC - SEQUENTIAL ANALYSIS

- Planning horizon $T \rightarrow \infty$
- Exogenous state drawn from set S (could be continuous or discrete)
- Suppose single asset with state-contingent r (will illustrate main ideas)

$$\max_{\{c_t,a_t\}_{t=0}^T} E_0 \sum_{t=0}^T \beta^t u(c_t) \text{ subject to } \begin{cases} c_t + a_t = y_t + (1+r_t)a_{t-1}, & t = 0,1,2,...T \\ \text{ state-contingent budget constraints in } t > 0 \end{cases}$$

FOCs

$$c_0$$
: $u'(c_0) - \lambda_0 = 0$

 a_0 :

$$c_1$$
: $\beta E_0 u'(c_1) - \beta E_0 \lambda_1 = 0$

Holds for each

$$E_0 u'(c_1^j) = E_0 \lambda_1^j, \ \forall j \in S$$

January 26, 2012

Model Analysis

STOCHASTIC - SEQUENTIAL ANALYSIS

- Planning horizon $T \rightarrow \infty$
- Exogenous state drawn from set S (could be continuous or discrete)
- Suppose single asset with state-contingent r (will illustrate main ideas)

$$\max_{\{c_i,a_i\}_{t=0}^T} E_0 \sum_{t=0}^T \beta^t u(c_t) \text{ subject to } \begin{cases} c_t + a_t = y_t + (1+r_t)a_{t-1}, & t = 0,1,2,...T \\ \text{state-contingent budget constraints in } t > 0 \end{cases}$$

FOCs

$$c_0$$
: $u'(c_0) - \lambda_0 = 0$

$$\mathbf{a_0:} \quad -\lambda_0 + \beta E_0 \left[\lambda_1 (1+r_1) \right] = 0$$

$$1 = E_0 \left[\frac{\beta \lambda_1}{\lambda_0} (1 + r_1) \right]$$

$$c_1$$
: $\beta E_0 u'(c_1) - \beta E_0 \lambda_1 = 0$

Holds for each

$$E_0 u'(c_1^j) = E_0 \lambda_1^j, \ \forall j \in S$$

STOCHASTIC - SEQUENTIAL ANALYSIS

- Planning horizon $T \rightarrow \infty$
- Exogenous state drawn from set S (could be continuous or discrete)
- Suppose single asset with state-contingent r (will illustrate main ideas) $\max_{\{c_t,a_t\}_{t=0}^T} E_0 \sum_{t=0}^T \beta^t u(c_t) \ \ \text{subject to} \left\{ \begin{array}{l} c_t + a_t = y_t + (1+r_t)a_{t-1}, \quad t = 0,1,2,...T \\ \text{state-contingent budget constraints in } t > 0 \end{array} \right.$

FOCs

$$c_1$$
: $\beta E_0 u'(c_1) - \beta E_0 \lambda_1 = 0$

Holds for each state
$$E_0 u \, {}^{\text{\tiny (C_1^j)}} = E_0 \lambda_1^j, \ \, \forall j \in S$$

a₁:
$$-\beta E_0 \lambda_1 + \beta^2 E_0 [\lambda_2 (1 + r_2)] = 0$$

$$c_2$$
: $\beta^2 E_0 u'(c_2) - \beta^2 E_0 \lambda_2 = 0$

Holds for each state
$$E_0 u \, {}^{\text{\tiny $}}(c_2^{\, j}) = E_0 \lambda_2^{\, j}, \ \, \forall j \in S$$

January 26, 2012

Model Analysis

STOCHASTIC - MARKOV SOLUTION

- $\{X_t\}_{t=0,1,2,\dots}$ is Markov process (exogenous and endogenous states)
 - Nothing about the probability distribution of X_{t+2} is known in period tthat is not known in period t+1
 - □ Information set of period t+1 is superset of information set of period t
- Allows applying a law of iterated expectations

$$\Box$$
 $E_{t} X_{t+2} = E_{t} [E_{t+1} X_{t+2}]$

$$E_0\lambda_1 = \beta {\color{red} E_0} \Big[\lambda_2 (1+r_2) \Big] \hspace{1cm} \longleftarrow \hspace{1cm} E_0\lambda_1 = \beta {\color{red} E_0} \Big[{\color{red} E_1} \Big(\lambda_2 (1+r_2) \Big) \Big]$$

STOCHASTIC - MARKOV SOLUTION

- $\{X_t\}_{t=0,1,2,\dots}$ is Markov process (exogenous and endogenous states)
 - Nothing about the probability distribution of X_{t+2} is known in period tthat is not known in period t+1
 - Information set of period t+1 is superset of information set of period t
- Allows applying a law of iterated expectations
 - $E_{t} X_{t+2} = E_{t} [E_{t+1} X_{t+2}]$

$$E_0\lambda_1 = \beta E_0 \left[\lambda_2(1+r_2)\right] \quad \longrightarrow \quad E_0\lambda_1 = \beta E_0 \left[E_1 \left(\lambda_2(1+r_2)\right)\right] \quad \longleftarrow$$

Date- and state-contingent decisions: decisions governed by this Euler condition are conditional on information set of period 1 (i.e., recursivity)

$$E_1 \lambda_1 = \beta E_1 \left[\lambda_2 (1 + r_2) \right] \qquad \longrightarrow \qquad \lambda_1 = \beta E_1 \left[\lambda_2 (1 + r_2) \right]$$

January 26, 2012

Model Analysis

STOCHASTIC - SEQUENTIAL ANALYSIS

- Planning horizon $T \rightarrow \infty$
- Exogenous state drawn from set S (could be continuous or discrete)
- Suppose single asset with state-contingent r (will illustrate main ideas)

$$\max_{\{c_t,a_t\}_{t=0}^T} E_0 \sum_{t=0}^T \beta^t u(c_t) \text{ subject to } \begin{cases} c_t + a_t = y_t + (1+r_t)a_{t-1}, & t = 0,1,2,...T \\ \text{state-contingent budget constraints in } t > \mathbf{0} \end{cases}$$

FOCs

c₁:
$$\beta E_0 u'(c_1) - \beta E_0 \lambda_1 = 0$$

 $E_1 u'(c_1^j) = E_1 \lambda_1^j, \ \forall j \in S$

$$a_1: -\beta E_0 \lambda_1 + \beta^2 E_0 [\lambda_2 (1+r_2)] = 0$$

Because Markov and

 $\lambda_1 = \beta E_1 \left[\lambda_2 (1 + r_2) \right]$

$$c_2$$
: $\beta^2 E_0 u'(c_2) - \beta^2 E_0 \lambda_2 = 0$

Holds for each

 $E_2 u'(c_2^j) = E_2 \lambda_2^j, \ \forall j \in S$

STOCHASTIC - MARKOV SOLUTION

- Planning horizon $T \rightarrow \infty$
- Exogenous state drawn from set S (could be continuous or discrete)
- Suppose single asset with state-contingent r (will illustrate main ideas)

$$\max_{\{c_t,a_t\}_{t=0}^T} E_0 \sum_{t=0}^T \beta^t u(c_t) \text{ subject to } \begin{cases} c_t + a_t = y_t + (1+r_t)a_{t-1}, & t = 0,1,2,...T \\ \text{with uncertain realizations in } t > \mathbf{0} \end{cases}$$

FOCs

$$c_t: \quad \beta^t E_0 u'(c_t) - \beta^t E_0 \lambda_t = 0$$

Holds for each date and state

$$u'(c_1^j) = \lambda_1^j, \ \forall j \in S$$

$$\textbf{a_t:} \quad -\beta^t E_0 \lambda_t + \beta^{t+1} E_0 \left[\lambda_{t+1} (1+r_{t+1}) \right] = 0$$
Because Markov and state- and date-

$$\lambda_{t} = \beta E_{t} \left[\lambda_{t+1} (1 + r_{t+1}) \right]$$

$$c_{t+1}$$
: $\beta^{t+1}E_0u'(c_{t+1}) - \beta^{t+1}E_0\lambda_{t+1} = 0$

Holds for each date and state

$$u'(c_2^j) = \lambda_2^j, \ \forall j \in S$$

One-period-ahead conditional expectation governs stochastic Euler condition

January 26, 2012

29

Model Solution

STOCHASTIC - MARKOV SOLUTION

- Denote exogenous state variables as z (e.g., $z_t = [y_t, r_t]$)
- Solution of infinite-horizon consumer problem is a consumption decision rule c(a, z;.), asset decision rule a(a, z;.), and value function V(a, z;.) that satisfies

Model Solution

STOCHASTIC - MARKOV SOLUTION

- Denote exogenous state variables as z (e.g., $z_t = [y_t, r_t]$)
- Solution of infinite-horizon consumer problem is a consumption decision rule c(a, z;.), asset decision rule a(a, z;.), and value function V(a, z;.) that satisfies
 - ☐ (Stochastic) Euler equation

$$u'(c(a,z)) = \beta E \left[u'(c(a',z'))(1+r') \right]$$

which is the (expectational) TVC in the limit $t \rightarrow \infty$:

$$\lim E_0 \beta' u'(c(a,z)) \cdot a(a,z) = 0$$

Budget constraint

$$y + (1+r)a - c(a,z) - a(a,z) = 0$$

January 26, 2012

Model Solution

31

STOCHASTIC - MARKOV SOLUTION

- Denote exogenous state variables as z (e.g., $z_t = [y_t, r_t]$)
- Solution of infinite-horizon consumer problem is a consumption decision rule c(a, z;.), asset decision rule a(a, z;.), and value function V(a, z;.) that satisfies
 - ☐ (Stochastic) Euler equation

$$u'(c(a,z)) = \beta E[u'(c(a',z'))(1+r')]$$

□ which is the (expectational) TVC in the limit $t \rightarrow \infty$:

$$\lim E_0 \beta^t u'(c(a,z)) \cdot a(a,z) = 0$$

□ Budget constraint

$$y + (1+r)a - c(a,z) - a(a,z) = 0$$
 Expectation in Bellman Equation $z \rightarrow z'$

□ Bellman Equation

taking as given (y,a,r) and (Markov) transition function for $z \rightarrow z'$

January 26, 2012 32

Stochastic Dynamic Programming

BELLMAN EQUATION

□ Bellman Equation (for $T \rightarrow \infty$)

$$V(a,z;.) \equiv \max_{c,a'} \left\{ u(c) + \lambda \left(y + (1+r)a - c - a' \right) + \beta \cdot \frac{EV(a',z';.)}{\uparrow} \right\}$$

- ☐ Use to characterize optimal decisions Expectation in Bellman Equation 7
- □ Current-period FOCs, evaluated using c(a,z;.), a(a,z;.)

c:

a':

Env:

January 26, 2012

Stochastic Dynamic Programming

BELLMAN EQUATION

□ Bellman Equation (for $T \rightarrow \infty$)

$$V(a,z;.) = \max_{c,a'} \left\{ u(c) + \lambda \left(y + (1+r)a - c - a' \right) + \beta \cdot \underbrace{EV(a',z';.)}_{A} \right\}$$

- Use to characterize optimal decisions $\begin{bmatrix} Expectation in Bellman Equation \\ z \rightarrow z' \end{bmatrix}$
- □ Current-period FOCs, evaluated using c(a,z;.), a(a,z;.)

c:
$$u'(c(a,z)) - \lambda = 0$$

a': $-\lambda + \beta EV_1(a(a,z), z(a,z);.) = 0$ $u'(c(a,z)) = \beta E[u'(c(a,z))(1+r)]$
Env: $EV_1(a,z;.) = \lambda(1+r)$

- ☐ Bellman analysis goes through as in deterministic case
 - ☐ (Given further technical conditions we won't study see SLP)

January 26, 2012 34

	Macro Fundament.
M	ARKOV RISK
	Why does Markov assumption make everything work?
	Main issue in moving from deterministic dynamic programming to stochastic dynamic programming: preserving recursivity
	☐ So exogenous states must also have recursive structure
	Shocks that have this recursive structure are Markov processes
	Markov has property that given the current realization, future realizations are independent of the past "Limited history dependence" "Finite memory"
	In environments in which the "regularity conditions" that ensure standard Bellman analysis applies to stochastic problems are not satisfied
	often simply need to ASSUME decision rules are Markov to mak progress
Ian	nary 26, 2012 35

