BASICS OF DYNAMIC PROGRAMMING
(CONTINUED)

JANUARY 26, 2012

Macro Fundamentals

RECURSIVE REPRESENTATION

d State variables

[m) A sufficient summary, as of the start of period t, of the dynamic
position of the environment in which the maximizing agent operates

Q “Environment” of the agent - what needs to be known in order to

optimize in period t?
The usual Lndil\(li:ual_-specific quantities Important: states can be
suspects arket prices o endogenous or exogenous
Government policies

(Fixed structural parameters - will omit from state vector for parsimony)

oo0oOo

a Ljungqvist and Sargent (2004, p. 16)

“The art in applying recursive methods is to find a convenient definition of a state. Itis
often not obvious what the state is, or even whether a finite-dimensional state exists.”
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Macro Fundamentals

RECURSIVE REPRESENTATION

a State variables

m] A sufficient summary, as of the start of period t, of the dynamic
position of the environment in which the maximizing agent operates

a “Environment” of the agent - what needs to be known in order to

optimize in period t?
The usual Individual-specific quantities Important: states can be
suspects Market prices endogenous or exogenous
Government policies
(Fixed structural parameters - will omit from state vector for parsimony)
a “'Sufficient” - there are no other objects (quantities, prices, govt
policies, etc.) that must be known in order to optimize in period t

ooo0oOo

Q Concept well-defined for both finite-T and T - o problems
a KEY: Period-t decisions are function of the period-t state variables

a Ljungqvist and Sargent (2004, p. 16)

“The art in applying recursive methods is to find a convenient definition of a state. Itis
often not obvious what the state is, or even whether a finite-dimensional state exists.”
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Deterministic Dynamic Programming

BELLMAN EQUATION

Q Bellman Equation

V°(a71, ro;-) = T%ﬂx{u(co)"‘lo(% +(1+ rf1)a>1 -Gy _ao)"'ﬁ'vl(ao' rl;')}

Q Starting point for recursive analysis
a Applicable to finite T-period or T = o problems
a Construction requires identifying state variables

a T-period problem
Q Solution involves sequence of functions Vv°(.), V1(.), ... , VT'1(.), VT(.)

a Vi(.) functions in general will differ - reflecting time until end of
planning horizon

a E.g., maximized value starting from age = 60 different from maximized
value starting from age = 30 (intuitively)

a Infinite-horizon problem (“stationary” environment)
a Deterministic case: V(.) =Vi(.) = Vi(.) Vi,j
Q Always an infinity of periods left to go
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Deterministic Dynamic Programming

BELLMAN EQUATION

a Bellman Equation (for T - )
V(a,, ;)= q.?aa.?<{u(co) + 2 (Yo + (4 1)a, —co—a,)+ BV (3,,1;.)]
a Use to characterize optimal decisions

a Period-0 FOCs, evaluated using time-invariant c(a_,), a(a_,)
ot U(c(@,))~ 4 =0
ag —Jy+ AV, (a,(a,),r;.)=0 - uic(@,))=pAA+ruc(a))

Env: V (a(a,).r;.)=A40+1)

a Seems like usual Euler equation from sequential analysis
(deterministic)...
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BELLMAN EQUATION

a Bellman Equation (for T 2> o)

\Y (aﬁl, f ) = U(C(afl)) + ﬂo (yo + (1+ r71)a71 - C(af1) - a(afl))"" ﬂ v (a(afl)' rs )

a Seems like a two-period problem
a In terms of (value) functions, not in terms of choice variables
a Optimize in current period
a Optimize next period (Bellman’s Principle of Optimality)
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BELLMAN EQUATION

a Bellman Equation (for T > o)

V(ahi)=u(c@y)+ 4 (Y + @+ ry)a, —ca,)-a(@,))+B-V(a(a,).5:)

a Seems like a two-period problem
a In terms of (value) functions, not in terms of choice variables
a Optimize in current period
a Optimize next period (Bellman’s Principle of Optimality)

a Common notation
a Use x for current-period variables
a Use x’ for next-period variables

a Bellman Equation
V(a,r;)=u(c(a)+A(y+@+r,)a—c
-

—~

a)-a(a))+ -V (a(a),r’.)
R -

=c =a’ =a’

a Euler equation

=c c’

u'(c(a)) = p+rju'(c(a))

10

—~
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Dynamic Programming

RECURSIVE VS. SEQUENTIAL ANALYSIS

a So why go recursive?

Q Allows application of series of theorems/results that guarantee a
solution exists in the space of functions
Q Allows application of series of theorems/results that help find solution

Underlying in the space of functions

Theory:
Contraction Mapping Theorem, Blackwell’s Sufficient Conditions for a Contraction, Theorem of the Maximum

] Suppose V(.) exists
a Procedure for finding V(.) and associated decision rules: iterate on Bellman
Equation starting from any arbitrary initial guess
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Dynamic Programming

RECURSIVE VS. SEQUENTIAL ANALYSIS

a So why go recursive?

a Allows application of series of theorems/results that guarantee a
solution exists in the space of functions

a Allows application of series of theorems/results that help find solution

Underlying in the space of functions
Theory:
Contraction ing Theorem, Bl ell’s Sufficient Conditions for a Contraction, Theorem of the Maximum

a Suppose V(.) exists
a Procedure for finding V(.) and associated decision rules: iterate on Bellman
Equation starting from any arbitrary initial guess - call it V1(.)

initial guess (some
i parametric form)

V(a,r;.)znggx{u(c)+/1(y+(l+ r)a—c—a')+ﬂ.v1(a',r';.)}
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Dynamic Programming

RECURSIVE VS. SEQUENTIAL ANALYSIS

a So why go recursive?

Q Allows application of series of theorems/results that guarantee a
solution exists in the space of functions

Q Allows application of series of theorems/results that help find solution

Underlying in the space of functions
Theory:

Contraction Mapping Theorem, Blackwell’s Sufficient Conditions for a Contraction, Theorem of the Maximum

] Suppose V(.) exists
a Procedure for finding V(.) and associated decision rules: iterate on Bellman
Equation starting from any arbitrary initial guess - call it V1(.)

initial guess (some
i parametric form)

V(ar;)=max{u(c)+ A(y+@+na-c-a’)+p-Vi(@,r’)|

Q Conduct maximization
a Gives functions c(a) and a(a)
a These are candidate (optimal) decision rules
[m] Insert candidate c(a) and a(a) into RHS of Bellman Equation - generates V2(.)
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Dynamic Programming

RECURSIVE VS. SEQUENTIAL ANALYSIS

a So why go recursive?

a Allows application of series of theorems/results that guarantee a
solution exists in the space of functions

a Allows application of series of theorems/results that help find solution

Underlying in the space of functions
Theory:
Contraction ing Theorem, Bl ell’s Sufficient Conditions for a Contraction, Theorem of the Maximum

a Suppose V(.) exists
a Procedure for finding V(.) and associated decision rules: iterate on Bellman
Equation starting from any arbitrary initial guess - call it V1(.)

initial guess (some
i parametric form)

V(a,r;.)znggx{u(c)+/1(y+(l+ r)a—c—a')+ﬂ.v1(a',r';.)}

Q Conduct maximization
[u] Gives functions c(a) and a(a)
[u] These are candidate (optimal) decision rules
] Insert candidate c(a) and a(a) into RHS of Bellman Equation - generates V2(.)

Does V2(.) = V1(.)?

January 26, 2012 11

Dynamic Programming

RECURSIVE VS. SEQUENTIAL ANALYSIS

a So why go recursive?

Q Allows application of series of theorems/results that guarantee a
solution exists in the space of functions

Q Allows application of series of theorems/results that help find solution

Underlying in the space of functions
Theory:

Contraction Mapping Theorem, Blackwell’s Sufficient Conditions for a Contraction, Theorem of the Maximum

] Suppose V(.) exists
a Procedure for finding V(.) and associated decision rules: iterate on Bellman
Equation starting from any arbitrary initial guess - call it V1(.)

initial guess (some
i parametric form)

V(ar;)=max{u(c)+ A(y+@+na-c-a’)+p-Vi(@,r’)|

Q Conduct maximization
If no, insert Qa Gives functions c(a) and a(a)
V2(.) on RHS O  These are candidate (optimal) decision rules

and repeat [m] Insert candidate c(a) and a(a) into RHS of Bellman Equation - generates V2(.)

Does V2(.) = V1(.)? If yes, stop. Have found V(.) ( = V2(.) = Vi(.))
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Dynamic Programming

RECURSIVE VS. SEQUENTIAL ANALYSIS

a So why go recursive?

a Allows application of series of theorems/results that guarantee a
solution exists in the space of functions

a Allows application of series of theorems/results that help find solution

Underlying in the space of functions
Theory:
Contraction ing Theorem, Bl ell’s Sufficient Conditions for a Contraction, Theorem of the Maximum
e.q., value a Computational algorithms require it - computers can’t handle infinite-
function dimensional objects!
iteration 0O  Soon: simple computational algorithms
a Can’t “choose” whether to analyze problem sequentially or recursively
a All but the most limited of problems require computational solution
a In which case model analysis is recursive
January 26, 2012 13

Dynamic Programming

RECURSIVE VS. SEQUENTIAL ANALYSIS

a So why go recursive?

Q Allows application of series of theorems/results that guarantee a
solution exists in the space of functions

Q Allows application of series of theorems/results that help find solution

Underlying in the space of functions
Theory:
Contraction Mapping Theorem, Blackwell’s Sufficient Conditions for a Contraction, Theorem of the Maximum

Q Computational algorithms require it - computers can’t handle infinite-

e.g., value - . =
function dimensional objects!
iteration O  Soon: simple computational algorithms
a Can’t “choose” whether to analyze problem sequentially or recursively
a All but the most limited of problems require computational solution
a In which case model analysis is recursive
a “Solving model sequentially”

O Doesn’t seem recursive... —— U(C)=/1+r)u'(c,,)

: ; R Imposing recursivity on solution
Q ...but computational implementation

requires time-invariant decision rule  U(c(a,,)) = L+ r)u'(c(a))
January 26, 2012 14




Dynamic Programming

RECURSIVE VS. SEQUENTIAL ANALYSIS

a So why go recursive?

a Allows application of series of theorems/results that guarantee a
solution exists in the space of functions

a Allows application of series of theorems/results that help find solution

Underlying in the space of functions
Theory:
Contraction ing Theorem, Bl ell’s Sufficient Conditions for a Contraction, Theorem of the Maximum

a Computational algorithms require it - computers can’t handle infinite-

e.g., value - . .
function dimensional objects!
iteration 0O  Soon: simple computational algorithms
a Can’t “choose” whether to analyze problem sequentially or recursively

a All but the most limited of problems require computational solution
a In which case model analysis is recursive

a What about stochastic dynamic programming?
a Even more structure required....
a The key assumption is Markov risk

January 26, 2012 15

Introduction

STOCHASTIC DYNAMIC PROGRAMMING

a Even more structure required on the problem to recursively solve
dynamic stochastic optimization problems

Q Main (new) technical problem
Q Branching of event tree at each of T periods (possibly T > o)

a Main technical solution/assumption
a Assume risk follows Markov process

a Which enables series of theorems/results from deterministic dynamic
programming to work in stochastic case...

a ...given further technical regularity assumptions

January 26, 2012 16




Stochastic Two-Period Model

EVENT TREE

Economic outcomes
ag during period 1: income,
consumption, savings

ar

Probability q:
Realization y,"

Probability p:
Realization y,bar

- Period 1
Beginning of
planning horizon

Probability 1-p-q:
Realization y,"

End of planning
horizon

Economic outcomes during period 2:
stochastic income, state-contingent
consumption, savings

January 26, 2012
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Stochastic T-Period Model

EVENT TREE

Period 0 Period 1 Period 2 Period 3 Period 4

In general could be any
arbitrary unfolding of
exogenous risk
e.g., if state i realized in period
16, then 14 possible states in
period 17; but if state j realized
in period 16, then 8 possible
states in period 17

OR
e.g., probability of state i in
period t depends on event in
period t-100000

Number of decision rules to
solve explodes
Intractable!!!

“Curse of dimensionality”

Requires a lot of structure on
exogenous risk

January 26, 2012
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Macro Fundamentals

RISK STRUCTURE

Assumptions

a Set of realizations of exogenous state variable is independent of date

S2=S3=S4=S5=...=ST-1=ST
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Macro Fundamentals

RISK STRUCTURE

Assumptions
a Set of realizations of exogenous state variable is independent of date

a Probability of realization of exogenous state variable in period t depends
only on outcomes in period t-1

a Suppose X, is a stochastic process and x, is a particular realization
] X; is a Markov process if

Pr(xl =X | Xt—l = X thz = X2 thz = Xigreen XHoooo = Xt—lOOOO""')

= Pr(xt = Xt | Xt—l = Xt—l) CONDITIONAL probability depends on only t-1

January 26, 2012 20
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Macro Fundamentals

RISK STRUCTURE

Assumptions
a Set of realizations of exogenous state variable is independent of date

a Probability of realization of exogenous state variable in period t depends
only on outcomes in period t-1

a Suppose X, is a stochastic process and x, is a particular realization
Q X, is a Markov process if

Pr(xt =X | X =% Xip =X Xt—3 = Xigreeen Xt—lOOOO = Xt—lOOOO""')
= F’I’(Xt =X | Xt—l = X171) CONDITIONAL probability depends on only t-1

a Not as restrictive as it may seem - could have finite lags in process
a E.g.

a Just can’t have infinite lags (in principle) or “too many” (finite) lags (in
computational practice)
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Macro Fundamentals

RISK STRUCTURE

Assumptions
a Set of realizations of exogenous state variable is independent of date

a Probability of realization of exogenous state variable in period t depends
only on outcomes in period t-1

a Suppose X, is a stochastic process and x, is a particular realization
] X; is a Markov process if

Pr(xl =X | X =X Xy = %o Xy = Xgheeen X goon0 = Xt—lOOOO""')
= Pr(xt = Xt | Xt—l = Xt—l) CONDITIONAL probability depends on only t-1

a Not as restrictive as it may seem - could have finite lags in process

a Exogenous state variable is Markov process + assumption/result that
decision rules are time-invariant (for T & o) functions of state variables

= Endogenous processes are Markov Underlying theory:
R - R Stokey, Lucas, Prescott
given several regularity assumptions (1989, Chapters 8-12)
January 26, 2012 22
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Model Analysis

STOCHASTIC - SEQUENTIAL ANALYSIS

a Planning horizon T > oo
a Exogenous state drawn from set S (could be continuous or discrete)
a Suppose single asset with state-contingent r (will illustrate main ideas)

c+a =y +@0+r)a,, t=012.T

T

t .

{crlna‘:’l})f Eotz(;,ﬂ U(Ct) subject t°{ state-contingent budget constraints int > 0
8o =

a FOCs
cot U'(C))—4 =0
agt
et BEU'(C)—BEA =0 - Eu'(c))=E,4, VjeS
olds for each
:ta:je
January 26, 2012 23

Model Analysis

STOCHASTIC - SEQUENTIAL ANALYSIS

a Planning horizon T > oo
a Exogenous state drawn from set S (could be continuous or discrete)
] Suppose single asset with state-contingent r (will illustrate main ideas)

c+a =y +@0+r)a, t=012.T

T

t .

{?S})T( EO;lB U(Ct) subject to{ state-contingent budget constraints int > 0
v t=0 =

a FOCs
cot  U'(c,))—4,=0
a: A+ fE[4(L+1)]=0 o 1=E, ij(“ n)}

period model

eyt PEU(C)-PBEL=0 — Eu'(c))=Ey4, Vje$s
Holds for eacl
state
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Model Analysis

STOCHASTIC - SEQUENTIAL ANALYSIS

a Planning horizon T > oo
a Exogenous state drawn from set S (could be continuous or discrete)
a Suppose single asset with state-contingent r (will illustrate main ideas)

c+a =y +@0+r)a,, t=012.T

T
t .
{c':na?})f Eotz(;,ﬂ U(Ct) subject t°{ state-contingent budget constraints int > 0
al, &

a FOCs
¢t PEN'(C)-BEL =0 — Eu'(c))=E,4, VjeS

Holds for each
state

a;: —pEA + B°E, [/12(1-1— rz)] =0

et FPEN'(C,) - B°Epd, =0 o Eu'(c;) =Ey4), Vje$
state

January 26, 2012 25

Model Analysis

STOCHASTIC - MARKOV SOLUTION

a {Xi}t=0,1,2,... is Markov process (exogenous and endogenous states)

a Nothing about the probability distribution of X, , is known in period t
that is not known in period t+1
a Information set of period t+1 is superset of information set of period t

] Allows applying a law of iterated expectations

a Ee Xts2 = E¢ [Egyr Xes2]

Eoﬂl :ﬂEo [/12(1+I‘2)] - Eo/li =ﬂEO[E1(/12(1+r2))]

January 26, 2012 26
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Model Analysis

STOCHASTIC - MARKOV SOLUTION

Q {Xi}t=0,1,2,... is Markov process (exogenous and endogenous states)

a Nothing about the probability distribution of X, , is known in period t
that is not known in period t+1
[u] Information set of period t+1 is superset of information set of period t

a Allows applying a law of iterated expectations
a Et Xe+2 = B¢ [Eeqa Xes2]

o = BE,[A4(+1,)] — Ejh=pE[E (4@1+r))] ]

a Date- and state-contingent decisions: decisions governed by this Euler
condition are conditional on information set of period 1 (i.e., recursivity)

- E111=ﬂEl[ﬂ,2(l+r2)] - j'lz,BEl[/lz(l"'rz)]

January 26, 2012 27

Model Analysis

STOCHASTIC - SEQUENTIAL ANALYSIS

a Planning horizon T > oo
a Exogenous state drawn from set S (could be continuous or discrete)
] Suppose single asset with state-contingent r (will illustrate main ideas)

LIS _ {Ct+at=yt+(l+rt)at,1. t=0,12,.T
max EO;’B U(G) subject to state-contingent budget constraints in t > 0

{ead,
Q FOCs

¢t PEU'(c)—-PEAL =0 —— Eu I(Clj) = Elﬂ,lj , Vjes
state

iy _ﬂEO/llJrﬂZEO [22(1+r2):| :0 Because Markov and Al :ﬂEl [ﬂz(l-‘r rz)]
state- and date-
contingent decisions

Cat ﬂonu'(Cz)_ﬂonﬂz =0 E,u I(Czj): Ez/?’zj! VjesS

Holds for each
state
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Model Analysis

STOCHASTIC - MARKOV SOLUTION

a Planning horizon T > oo
a Exogenous state drawn from set S (could be continuous or discrete)
a Suppose single asset with state-contingent r (will illustrate main ideas)

L _ {cl+a[=y1+(1+rt)aH, t=012,.T
{c':na‘:’l})w( EO;IB U(Ct) subject to | \jth uncertain realizations in t > 0

a FOCs

ce  BEM(C)-B'EL =0 — u'c))=24', vjes
date and state

ag _ﬂ! EO& +ﬂt+1E0 [/’11+1(1+ rt+1)] =0 ﬂ‘( = ﬂEt [/11+1(1+ rt+1)]
Because Markov and
state- and date-
contingent decisions

1 1 1 ) ) .
Cee1* ﬂH Eou'(c,,) _ﬂH B4, =0 - u I(CZJ) =1}, VjeS
Holds for each
date and state

a One-period-ahead conditional expectation governs stochastic Euler condition
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Model Solution

STOCHASTIC - MARKOV SOLUTION

a Denote exogenous state variables as z (e.g., z; = [y, r])

a Solution of infinite-horizon consumer problem is a consumption decision rule
c(a, z;.), asset decision rule a(a, z;.), and value function V(a, z;.) that
satisfies

January 26, 2012 30
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Model Solution

STOCHASTIC - MARKOV SOLUTION

a Denote exogenous state variables as z (e.g., z; = [y, r])

a Solution of infinite-horizon consumer problem is a consumption decision rule
c(a, z;.), asset decision rule a(a, z;.), and value function V(a, z;.) that
satisfies

a (Stochastic) Euler equation
u'(c(a,z))= BE[u'(c(a’,z))d+r")]
O  which is the (expectational) TVC in the limit t > co:
lim E,A'u'(c(a, z))-a(a, z)=0
a Budget constraint
y+(@+r)a-c(a,z)—a(a,z)=0
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Model Solution

STOCHASTIC - MARKOV SOLUTION

a Denote exogenous state variables as z (e.g., z; = [y, r])

a Solution of infinite-horizon consumer problem is a consumption decision rule
c(a, z;.), asset decision rule a(a, z;.), and value function V(a, z;.) that
satisfies

[m] (Stochastic) Euler equation
u'(c(a, 2)) = BE[u'(c(a’, 2)@+r")]
O which is the (expectational) TVC in the limit t > co:
!LrQ E,p'u'(c(a,z))-a(a, z)=0

[m] Budget constraint

Expectation | Transition f
y+ (1+ r)a - C(a, Z) - a(a, Z) =0 B:ﬂre':a: :,qnulantion Zr_a)nzs'| fon from
a Bellman Equation l l

V(a,z;.)=u(c(a, z))+/1(y+ (@+r)ya-c(a,z)—a(a, z))+ﬂ' EV (a(a,z),z(a,z);.)

taking as given (y,a, r) and (Markov) transition function for z > z’

January 26, 2012 32
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Stochastic Dynamic Programming

BELLMAN EQUATION

a Bellman Equation (for T - )
V(a,z;)=max{u(c)+A(y+(@+rja-c—a')+ B-EV(a'z".)}

oo

Expectation in Transition from

a Use to characterize optimal decisions Bellman Equation 2 5 s

a Current-period FOCs, evaluated using c(a,z;.), a(a,z;.)

Env:
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Stochastic Dynamic Programming

BELLMAN EQUATION

a Bellman Equation (for T > o)
V(a,z;.)=max{u(c)+A(y+@+ra-c-a’)+B-EV(a'z4.)}

o

Expectation in Transition from

a Use to characterize optimal decisions Bellman Equation 7 > 7'

a Current-period FOCs, evaluated using c(a,z;.), a(a,z;.)
c: u'(c(a,z))-1=0
a  —A+pBEV(a(a z) 2(az);)=0 » u'c(az)=pE[u'(c(a 2))A+r)]
Env: EV(a,z;.)=4A1+r)

a Bellman analysis goes through as in deterministic case
Q (Given further technical conditions we won’t study - see SLP)
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Macro Fundamentals

MARKOV RISK

a Why does Markov assumption make everything work?

a Main issue in moving from deterministic dynamic programming to
stochastic dynamic programming: preserving recursivity
a So exogenous states must also have recursive structure

a Shocks that have this recursive structure are Markov processes

a Markov has property that given the current realization, future
realizations are independent of the past
a “'Limited history dependence”

a “Finite memory”

a In environments in which the “regularity conditions” that ensure
standard Bellman analysis applies to stochastic problems are not
satisfied...

a ...often simply need to ASSUME decision rules are Markov to make
progress
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