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❑ Zero optimal long-run capital tax

 Chari, Christiano, and Kehoe (1991 JMCB)

❑ First computational application of Lucas and Stokey

❑ Chari and Kehoe (1999 Handbook of Macroeconomics)  

❑ Stream of quantitative 
macro-Ramsey papers  

❑ Optimal fiscal and/or jointly optimal 
fiscal and monetary policy

❑ Adopt primal formulation

❑ Assume commitment

❑ Assumption timeless perspective

General issues to be aware 
of/take a stand on for any 
optimal policy analysis
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Lump-sum tax 
available or not?
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Introduction

 Set up economic environment

 Household problem

 Firm problem

 Specification of government policy

 Policy tools (monetary, fiscal, or both monetary and fiscal)

 Government budget constraint(s)

 Solve for/define private-sector equilibrium

 For any arbitrary government policy

 Define social welfare criterion

 Representative-consumer model:  expected discounted lifetime utility

 Heterogeneous-consumer model:  not as obvious…how to weight?

 Choose government policy rules subject to all equilibrium 
conditions of economy

 Basic idea:  benevolent policy-maker is a “Social Planner” with the 
additional restrictions imposed by decentralized equilibrium 

KEY ISSUE:
Lump-sum tax 
available or not?
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 By eliminating govt policy variables (and prices) using equilibrium 
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 Formulate Ramsey optimization problem in terms of only allocations

 By eliminating govt policy variables (and prices) using equilibrium 
conditions

 Given optimal allocation, construct (implied) policy instruments that support 
allocation (ala Ramsey (1927))

 Long-standing approach in fiscal policy analysis …

 … but harder to implement in NK monetary policy analysis

 Commitment

 With initial state variable and/or forward-looking equilibrium conditions, policy 
FOCs for t = 0 differ from policy FOCs for t > 0 

 Assume government can bind itself to state-contingent policy paths for t > 0 
(based on policy functions determined in t = 0)

 (Opposite of commitment is discretion)

 Timeless Perspective

 Set t = 0 state to the steady-state of the t > 0 policy FOCs

 Ignoring transition dynamics associated with initially-suboptimal policies

 Interpretation:  the optimal policy has already been in operation for a long time

OPTIMAL POLICY PROBLEMS:  ISSUES
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Ramsey Problem

❑ Ramsey problem (Primal) 

❑ Ramsey FOCs (for t > 0, which sidesteps issue of taxation of t = 0
initial capital stock and other assets, of which A0 is a function)

❑ Commitment by Ramsey government to its t > 0 policies at t = 0

❑ Discretionary Ramsey government does not commit to its t > 0 policies 
at t = 0
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BASICS OF RAMSEY MACRO FISCAL POLICY

First-Best vs. Second-Best

❑ Ramsey FOCs (for t > 0, which sidesteps issue of taxation of t = 0
initial capital stock and other assets, of which A0 is a function)

❑ Social Planner FOCs
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First-Best vs. Second-Best
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First-Best vs. Second-Best

❑ Ramsey FOCs (for t > 0) at deterministic steady state

❑ Social Planner FOCs at deterministic steady state
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First-Best vs. Second-Best

❑ Ramsey FOCs (for t > 0) at deterministic steady state

❑ Social Planner FOCs at deterministic steady state

❑ (3) and (6) imply Ramsey-optimal k/n ratio = efficient k/n ratio

❑ (Given maintained assumption of CRS production f(.))

❑ A crucial result!

❑ Second-best k/n ratio = first-best k/n ratio

❑ Chamley (1986 ECTA), Judd (1985 JPub) seminal references
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ZERO CAPITAL INCOME TAX

Optimal Taxes

❑ What does this imply for Ramsey-optimal tax rates?

❑ Recall household optimization

❑ With labor income tax and capital income tax (and no lump-sum taxes)

❑ Steady-state consumption-labor optimality (labor supply condition)

❑ Steady-state consumption-savings optimality (capital Euler condition) 
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Optimal Taxes

❑ What does this imply for Ramsey-optimal tax rates?

❑ Recall household optimization

❑ With labor income tax and capital income tax (and no lump-sum taxes)

❑ Steady-state consumption-labor optimality (labor supply condition)

❑ Steady-state consumption-savings optimality (capital Euler condition)

❑ Ramsey-optimal capital income tax rate = 0!

❑ Don’t tax intertemporal margin at all in the long run…

❑ …even though Ramsey government has to raise revenue through 
distortionary taxes
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POSITIVE LABOR INCOME TAX

Optimal Taxes

❑ What does this imply for Ramsey-optimal tax rates?

❑ Steady-state consumption-labor optimality (labor supply condition)

❑ Steady-state consumption-savings optimality (capital Euler condition)

❑ Ramsey-optimal capital income tax rate = 0!

❑ Don’t tax intertemporal margin at all in the long run…

❑ …even though Ramsey government has to raise revenue through 
distortionary taxes

❑ All revenue must be raised through positive labor income tax

❑ Two central macro-Ramsey fiscal policy results
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DYNAMICS OF TAX RATES

Optimal Taxes

❑ Outside the steady state?

❑ Focus on labor income tax rate (simple to consider)

❑ Consumption-labor optimality (labor supply condition)
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DYNAMICS OF TAX RATES

Optimal Taxes

❑ Outside the steady state?

❑ Focus on labor income tax rate (simple to consider)

❑ Consumption-labor optimality (labor supply condition)

❑ Labor income tax is a wedge between labor supply and labor 
demand

❑ Along the business cycle?

❑ Consider utility form
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DYNAMICS OF TAX RATES

Optimal Taxes

❑ Along the business cycle?

❑ Consider utility form

❑ Compute first and second derivatives of u(.) and h(.)…

❑ …which are needed to compute Wc(.) and Wn(.)

❑ Do some algebra combining the Ramsey FOCs …
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DYNAMICS OF TAX RATES

Optimal Taxes

❑ Along the business cycle?

❑ Consider utility form

❑ Compute first and second derivatives of u(.) and h(.)…

❑ …which are needed to compute Wc(.) and Wn(.)

❑ Do some algebra combining the Ramsey FOCs …

  
u(c

t
) - h(n

t
) = lnc

t
-

k

1+1/ i
n

t

1+1/i

  

k ×n
t

1/i ×c
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= 1+ m
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èç
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é
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û
ú

-1

× z
t
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n
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t
,n

t
)

= MRSt = MPNt= wedge between 
MRSt and MPNt

ι is Frisch elasticity of  
labor supply with respect 

to real wage
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DYNAMICS OF TAX RATES

Optimal Taxes

❑ Along the business cycle?

❑ Consider utility form

❑ Compute first and second derivatives of u(.) and h(.)…

❑ …which are needed to compute Wc(.) and Wn(.)

❑ Do some algebra combining the Ramsey FOCs …

❑ Wedge is a (endogenous…) constant between MRS and MPN in 
every time period

❑ μ = 0 (the case of lump-sum taxes) ➔ wedge = 0

❑ μ > 0 (the Ramsey case) ➔ wedge ≠ 0

  
u(c

t
) - h(n

t
) = lnc

t
-

k

1+1/ i
n

t

1+1/i

  

k ×n
t

1/i ×c
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× z
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= MRSt = MPNt= wedge between 
MRSt and MPNt

ι is Frisch elasticity of  
labor supply with respect 

to real wage
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DYNAMICS OF TAX RATES

Optimal Taxes

❑ Along the business cycle?

❑ Wedge is a (endogenous…) constant between MRS and MPN in 
every time period…

❑ …thus labor income tax rate is constant over time (for this utility 
form)

❑ Nearly constant if move to slightly different h(n) function

  

k ×n
t

1/i ×c
t
= 1+ m

1+i
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t
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t
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= MRSt = MPNt= wedge between 
MRSt and MPNt
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DYNAMICS OF TAX RATES

Optimal Taxes

❑ Along the business cycle?

❑ Wedge is a (endogenous…) constant between MRS and MPN in 
every time period…

❑ …thus labor income tax rate is constant over time (for this utility 
form)

❑ Nearly constant if move to slightly different h(n) function

❑ Labor income tax smoothing

❑ Key Ramsey macro fiscal policy result

❑ Keep deadweight losses constant across markets over time

❑ aka wedges constant

  

k ×n
t
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× z
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n
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t
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t
)

= MRSt = MPNt= wedge between 
MRSt and MPNt
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TAX SMOOTHING VS. WEDGE SMOOTHING

Optimal Wedges

❑ Ramsey government smooths wedges across time

w

n

Period t

WEDGE tt tMRS MPN t= 

w

n

Period t+1

Keep wedges 
(roughly) the 

same size

Wedge (Walrasian
labor market)
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MATCHING EFFICIENCY

GE Efficiency

❑ Social Planner

s.t.
Resource constraint

tt t tt vc g z n+ + =

  

max
c,n

t
,s

t
,v

t{ }
E

0

t=0

¥

åb t u(c
t
) - h lfp

t( )é
ë

ù
û

Aggregate LOM for 
total employment1(1 , )) (t t t tn n m vs −= − +

lfpt ≡ (1-pt)st + nt
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MATCHING EFFICIENCY

GE Efficiency

❑ Social Planner

Resource constraint
tt t tt vc g z n+ + =

  

max
c,n

t
,s

t
,v

t{ }
E

0

t=0

¥

åb t u(c
t
) - h lfp

t( )é
ë

ù
û

Aggregate LOM for 
total employment1(1 , )) (t t t tn n m vs −= − +

Static Efficiency Condition.

“Efficient Participation Condition”

Can instead derive directly off transformation 
frontier of model.

s.t.

FOCs

(consider deterministic case)

  

h '(lfp
t
)

u '(c
t
)

=
g m

s
(s

t
,v

t
)

m
v
(s

t
,v

t
)

           = gq
t

x

1- x

lfpt ≡ (1-pt)st + nt
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MATCHING EFFICIENCY

GE Efficiency

❑ Social Planner

( )1 1

1 1

1

) ( , )
( , )

(1 1
' )

'( )

( ,

(

)

s t t

v t tt

t
t

v t t

m
mu c

z

s v
s v

u c

m s v






+ +

+ +

+

 
− − 

 =

−

Intertemporal Efficiency Condition.

“Efficient Vacancies Condition”

Can instead derive directly off transformation frontier of 
model.

Resource constraint
tt t tt vc g z n+ + =

  

max
c,n

t
,s

t
,v

t{ }
E

0

t=0

¥

åb t u(c
t
) - h lfp

t( )é
ë

ù
û

Aggregate LOM for 
total employment1(1 , )) (t t t tn n m vs −= − +

FOCs

(consider deterministic case)

  

h '(lfp
t
)

u '(c
t
)

=
g m

s
(s

t
,v

t
)

m
v
(s

t
,v

t
)

           = gq
t

x

1- x

s.t.

lfpt ≡ (1-pt)st + nt

Static Efficiency Condition.

“Efficient Participation Condition”

Can instead derive directly off transformation 
frontier of model.
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TRANSFORMATION FRONTIER

GE Efficiency

❑ Construct model-consistent transformation function

“The production set is taken as a primitive datum of the theory…If [the transformation function] F(·) is 
differentiable, and if the production vector y satisfies F(y) = 0, then for any commodities l and k, the ratio

is called the marginal rate of transformation (MRT) of good l for good k at vector y… 

…A  single-output technology is commonly described by means of a production function f(z)…Holding the 
level of output fixed, we can define the marginal rate of technical substitution (MRTSl,k) … Note that MRTSl,k

is simply a renaming of the marginal rate of transformation…in the special case of a single-output 
technology.”

Microeconomic Theory, Mas-Colell, Whinston, and Green (p. 128 – 130)

,

( ) /
( )

( ) /

l
l k

k

M
F y y

y
F y y

RT
 

=
 
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TRANSFORMATION FRONTIER

GE Efficiency

❑ Ceteris paribus…

❑ Does one-unit decrease in (1 – lfpt) affect ct?

❑ If so, how?

❑ Does one-unit decrease in ct affect ct+1?

❑ If so, how? 
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TRANSFORMATION FRONTIER

GE Efficiency

❑ Transformation function

1 ,( )(1 ) t tt tn vn m s −= − +t t ttvc nz+ =
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TRANSFORMATION FRONTIER

GE Efficiency

❑ Transformation function 

❑ →

❑ Insert into LOM for nt to construct

❑ Use lfpt = (1-ρ)nt-1 + st to construct within-period transformation frontier

1 ,( )(1 ) t tt tn vn m s −= − +t t ttvc nz+ =

t t t
t

z n
v

c



−
=

( ) 1 1, , ; ) 1 )( ,1 ( 0t t
t t t t t t t

tn m lf
z n c

c l p nf n n p 


− −

 
− − − − − =



−
 


 

1) ,(1 0t t t
t ttn

n
s

z c
n m


−

 
−

−
− − = 

 
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TRANSFORMATION FRONTIER

GE Efficiency

❑ Transformation function 

❑ →

❑ Insert into LOM for nt to construct

❑ Use lfpt = (1-ρ)nt-1 + st to construct within-period transformation frontier

❑ Use IFT to obtain static MRT (participation margin)

1 ,( )(1 ) t tt tn vn m s −= − +t t ttvc nz+ =

t t t
t

z n
v

c



−
=

( ) 1 1, , ; ) 1 )( ,1 ( 0t t
t t t t t t t

tn m lf
z n c

c l p nf n n p 


− −

 
− − − − − =
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 
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t t
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lfp s t t
c lfp

c v t t

m s v
MRT

m s v



= − =



STATIC MRT between LFP and 
Walrasian good

1) ,(1 0t t t
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n
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−

 
−

−
− − = 
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TRANSFORMATION FRONTIER – INTUITION

GE Efficiency

❑ One-unit decrease in (1 – lfpt) …

❑ → increases st by one unit …

❑ → increases nt by               units …( , )s t tm s v
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GE Efficiency

❑ One-unit decrease in (1 – lfpt) …

❑ → increases st by one unit …

❑ → increases nt by               units …

❑ → increases ztnt by                 units …

( , )s t tm s v

( , )t s t tz m s v

TRANSFORMATION FRONTIER – INTUITION
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GE Efficiency

❑ One-unit decrease in (1 – lfpt) …

❑ → increases st by one unit …

❑ → increases nt by               units …

❑ → increases ztnt by                 units …

❑ To hold nt constant, vt must decrease by               …

❑ … which decreases ztnt by                    units 

( , )s t tm s v

( , )t s t tz m s v

( , )v t tm s v

( , )t v t tz m s v



,

( , )

( , )t t

s t t
c lfp

v t t

m s v
MRT

m s v
 =

TRANSFORMATION FRONTIER – INTUITION
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TRANSFORMATION FRONTIER

GE Efficiency

❑ Ceteris paribus…

❑ Does one-unit decrease in (1 – lfpt) affect ct?

❑ Does one-unit decrease in ct affect ct+1? 

❑ If so, how? 

,

( , )

( , )

t

t t

t

lfp s t t
c lfp

c v t t

m s v
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m s v



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TRANSFORMATION FRONTIER

GE Efficiency

❑ Transformation function 

❑ → , then insert into LOM for nt

❑ →

❑ Use lfpt = (1-ρ)nt-1 + st to construct within-period transformation frontier

❑ Use IFT to obtain static MRT (participation margin)

t t ttvc nz+ =
1 ,( )(1 ) t tt tn vn m s −= − +
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STATIC MRT between LFP and 
Walrasian good
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Marginal effect on nt of a change in ct

…which has intertemporal consequences
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TRANSFORMATION FRONTIER

GE Efficiency

❑ Transformation function across periods

❑ Use IFT to obtain intertemporal MRT 

( ) 1 1
1

1
1 1 1,, , (1 ) ) ,1; ( 0t t
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TRANSFORMATION FRONTIER

GE Efficiency

❑ Transformation function across periods

❑ Use IFT to obtain intertemporal MRT 

( ) 1 1
1 1 1 1
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TRANSFORMATION FRONTIER

GE Efficiency

❑ Transformation function across periods

❑ Use IFT to obtain intertemporal MRT 

1
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TRANSFORMATION FRONTIER

GE Efficiency

❑ Transformation function across periods

❑ Use IFT to obtain intertemporal MRT 
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TRANSFORMATION FRONTIER

GE Efficiency

❑ Transformation function across periods

❑ Use IFT to obtain intertemporal MRT 
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 −And convert back into 
consumption units …
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TRANSFORMATION FRONTIER – INTUITION 

GE Efficiency

❑ One unit reduction in ct …

❑ → increases vt by        units 

❑ → increases nt by units
( , )v t tm s v



1/ 
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GE Efficiency

❑ One unit reduction in ct …

❑ → increases vt by        units 

❑ → increases nt by units

❑ → increases ct by                    units

( , )v t tm s v



1/ 

( , )t v t tz m s v



TRANSFORMATION FRONTIER – INTUITION 
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GE Efficiency

❑ One unit reduction in ct …

❑ → increases vt by        units 

❑ → increases nt by units

❑ → increases ct by                    units

❑ … so resulting change in ct is …

( , )v t tm s v



1/ 

Must be netted out…

( , )
( 1)t v t tz m s v



−


( , )t v t tz m s v

 …in order to hold period-t 
output constant

TRANSFORMATION FRONTIER – INTUITION 
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GE Efficiency

❑ One unit reduction in ct …

❑ → increases vt by        units 

❑ → increases nt by units

❑ → increases ct by                    units

❑ … so resulting change in ct is …

❑ → increase in vt by                           units for ONE-UNIT DECREASE IN ct

( , )v t tm s v



1/ 

Must be netted out…

( , )
( 1)t v t tz m s v



−


( , )t v t tz m s v

 …in order to hold period-t 
output constant

1

( , )t v t tz m s v −

TRANSFORMATION FRONTIER – INTUITION 
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GE Efficiency

❑ Increase in vt by                           units …

❑ → increase in m(st,vt) by                           units …

1

( , )t v t tz m s v −

( , )

( , )

v t t

t v t t

m s v

z m s v −

TRANSFORMATION FRONTIER – INTUITION 
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GE Efficiency

❑ Increase in vt by                           units …

❑ → increase in m(st,vt) by                           units …

❑ → increase in m(st+1,vt+1) by                                      units …

1
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TRANSFORMATION FRONTIER – INTUITION 
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GE Efficiency

❑ Increase in vt by                           units …

❑ → increase in m(st,vt) by                           units …

❑ → increase in m(st+1,vt+1) by                                      units …

❑ To hold nt+1 constant, st+1 must decrease by ms(st+1,vt+1) …
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TRANSFORMATION FRONTIER – INTUITION 
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GE Efficiency

❑ Increase in vt by                           units …

❑ → increase in m(st,vt) by                           units …

❑ → increase in m(st+1,vt+1) by                                      units …

❑ To hold nt+1 constant, st+1 must decrease by ms(st+1,vt+1) …

❑ → increase in vt+1 by                                                                  units …
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TRANSFORMATION FRONTIER – INTUITION 
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GE Efficiency

❑ Increase in vt+1 by                                                                  units …

❑ → increases by ct+1 units
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TRANSFORMATION FRONTIER – INTUITION 



February 15, 2019 68

TRANSFORMATION FRONTIER

GE Efficiency

❑ Ceteris paribus…

❑ Does one-unit decrease in (1 – lfpt) affect ct?

❑ Does one-unit decrease in ct affect ct+1? 

,

( , )

( , )

t

t t

t

lfp s t t
c lfp

c v t t

m s v
MRT

m s v



= − =



( )

1

1 1

,

(1 ) 1 ( , )
( , )

( , )

t t

s t t

v t t

c c

t

v t t

m s v
m s v

IMRT

z
m s v




+

+ +

 
− − 

 


−



February 15, 2019 69

MATCHING EFFICIENCY

GE Efficiency

❑ Efficiency characterized by

Static Efficiency Condition. Intertemporal Efficiency Condition.
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MATCHING EFFICIENCY

GE Efficiency

❑ Efficiency characterized by

❑ Ramsey theory:  stabilizing THESE wedges is optimal

❑ MRTs in DSGE search and matching model:  Arseneau and Chugh (2012 JPE)

❑ Contribution to understanding efficiency in DGE models with “entry” margins

❑ MRTs in new monetarist models:  Aruoba and Chugh (2010 JET)

❑ MRTs in customer market models:  Arseneau, Chahrour, Chugh, and Finkelstein 
Shapiro (2015 JMCB)

❑ MRTs in endogenous product variety framework:  Chugh and Ghironi (2018)

Static Efficiency Condition. Intertemporal Efficiency Condition.
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TAX SMOOTHING

Introduction

❑ Ramsey government smooths wedges across time

❑ Result and intuition depend on neoclassical view of labor markets

❑ Labor tax is the only wedge → tax-smoothing is wedge-smoothing

❑ Question:  Is tax smoothing optimal in search and matching labor 
markets?

w

n

Period t

(1 )n

t t tMRS MPN t= − 

w

n

Period t+1

Keep wedges 
(roughly) the 

same size
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OVERVIEW OF MODEL

Model Basics

❑ Infinitely-lived representative household, measure one of members

❑ Employed members

❑ Unemployed members

❑ Members outside the labor force (“leisure”)

❑ Exogenous stochastic government spending

❑ Financed via labor income taxation and one-period real state-contingent
debt

❑ Government provides unemployment benefits

❑ Government provides vacancy subsidies

❑ For completeness of tax instruments (Ramsey issue)

Full consumption insurance –
standard in DSGE labor search 
models

Incompleteness of government 
debt markets NOT driving our 
results (Aiyagari et al (2002 JPE))
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OVERVIEW OF MODEL

Model Basics

❑ Infinitely-lived representative household, measure one of members

❑ Employed members

❑ Unemployed members

❑ Members outside the labor force (“leisure”)

❑ Exogenous stochastic government spending

❑ Financed via labor income taxation and one-period real state-contingent
debt

❑ Government provides unemployment benefits

❑ Government provides vacancy subsidies

❑ For completeness of tax instruments (Ramsey issue)

❑ Labor market with matching frictions and wage-setting frictions

❑ Only an extensive labor margin, no intensive labor margin

❑ Timing: “instantaneous production”

Full consumption insurance –
standard in DSGE labor search 
models

Incompleteness of government 
debt markets NOT driving our 
results (Aiyagari et al (2002 JPE))
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OVERVIEW OF MODEL

Model Basics

❑ Unemployed are the unsuccessful searchers:  uet = (1-pt)st

❑ pt = probability an individual finds a job and begins working immediately
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HOUSEHOLD OPTIMIZATION

Model

❑ Maximize expected lifetime utility
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disutility of employment + 
unsuccessful search
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HOUSEHOLD OPTIMIZATION

Model

❑ Maximize expected lifetime utility

Flow budget constraint

s.t.

Baseline analysis:  set τd = 1 → no 

profit-taxation issues driving results
measure n earn after-
tax wage income

measure ue = (1-p)s 
receive ue benefit χ
(government financed)

  
c

t
+ b

t
= n

t
(1-t

t

n)w
t
+ (1- p

t
)s

t
c + R

t
b

t-1
+ (1-t d )d

t
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HOUSEHOLD OPTIMIZATION

Model

❑ Maximize expected lifetime utility

1(1 )t t t tn n s p −= − + Perceived LOM for 
employment (“instantaneous 
production”)

s.t.

flow of new employment relationships = 
measure of searchers st x probability a 
searcher successfully lands a job

(exogenous) measure of 
pre-existing employment 
relationships terminate

FOCs with respect ct, nt, 
st, bt
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measure n earn after-
tax wage income

Flow budget constraint

measure ue = (1-p)s 
receive ue benefit χ
(government financed)

disutility of employment + 
unsuccessful search

Baseline analysis:  set τd = 1 → no 

profit-taxation issues driving results
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HOUSEHOLDS

Model

❑ Household LFP condition (the labor supply condition)

❑ MRS between lfpt and ct = expected payoff of searching

❑ Unemployment benefit (with probability 1 – pt) 

❑ After-tax wage + continuation value (with probability pt)
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HOUSEHOLDS

Model

❑ Household LFP condition (the labor supply condition)

❑ MRS between lfpt and ct = expected payoff of searching

❑ Unemployment benefit (with probability 1 – pt) 

❑ After-tax wage + continuation value (with probability pt)

To recover standard labor supply function (e.g., RBC)

1.  ρ = 1  (all employment relationships terminate at end of every 
period)

2.  p = 1  (probability a searcher finds a job)

3.  χ = 0  (no ue benefit because no notion of “ue”)
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FIRMS

Model

❑ Production

❑ Requires a matched job-worker pair:  posting cost γ per vacancy

❑ Individual job i produces yit = zt

❑ Aggregate output yt = ntzt (symmetry across jobs)
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FIRMS

Model

❑ Production

❑ Requires a matched job-worker pair:  posting cost γ per vacancy

❑ Individual job i produces yit = zt

❑ Aggregate output yt = ntzt (symmetry across jobs)

❑ Dynamic profit-maximization problem

Firm’s perceived LOM for total 
employment (“instantaneous 
hiring”)
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1(1 ) t tttn n v q −= − +

Ensures completeness 
of tax instruments

(exogenous) measure of 
pre-existing employment 
relationships terminate

flow of new employment relationships = 
# job-openings x probability an opening 
attracts a searching individual
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FIRMS

Model

❑ Production

❑ Requires a matched job-worker pair:  posting cost γ per vacancy

❑ Individual job i produces yit = zt

❑ Aggregate output yt = ntzt (symmetry across jobs)

❑ Dynamic profit-maximization problem

❑ Vacancy-creation condition

(exogenous) measure of 
pre-existing employment 
relationships terminate

flow of new employment relationships = 
# job-openings x probability an opening 
attracts a searching individual

1(1 ) t tttn n v q −= − +

cost of posting vacancy 
(inclusive of subsidy or tax) benefit of posting vacancy
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Firm’s perceived LOM for total 
employment (“instantaneous 
hiring”)
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LABOR MARKET

Model

❑ Labor-market tightness θt = vt/ut

❑ Important aggregate variable in matching-based models

❑ Matching probabilities p and q depend only on θ given CRTS matching

❑ Key statistic for matching efficiency
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LABOR MARKET

Model

❑ Labor-market tightness θt = vt/ut

❑ Important aggregate variable in matching-based models

❑ Matching probabilities p and q depend only on θ given CRTS matching

❑ Key statistic for matching efficiency

❑ Matching function

❑ LOM for aggregate employment

❑ Nash bargaining over wage payment solves

Value to firm of 
hiring another 

worker
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LABOR MARKET

Model

❑ Labor-market tightness θt = vt/ut

❑ Important aggregate variable in matching-based models

❑ Matching probabilities p and q depend only on θ given CRTS matching

❑ Key statistic for matching efficiency

❑ Matching function

❑ LOM for aggregate employment

❑ Nash bargaining over wage payment solves

Value to firm of 
hiring another 

worker
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Although main results also 
hold if we discard Nash 
bargaining and assume ad-hoc 
real wage rigidity:

wt = wbar in every period t
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GOVERNMENT AND RESOURCE FRONTIER

Model 

❑ Exogenous government spending financed via

❑ Labor income tax

❑ One-period state contingent real debt

❑ Government provides unemployment benefits

❑ Rather than assuming χ is “home production”
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GOVERNMENT AND RESOURCE FRONTIER

Model

❑ Exogenous government spending financed via

❑ Labor income tax

❑ One-period state contingent real debt

❑ Government provides unemployment benefits

❑ Rather than assuming χ is “home production”

❑ Resource constraint

❑ = govt budget constraint + hh budget constraint

❑ Assuming χ is govt-financed allows it to drop out of resource constraint

❑ Makes model more comparable to existing Ramsey models 
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GOVERNMENT AND RESOURCE FRONTIER

Model

❑ Exogenous government spending financed via

❑ Labor income tax

❑ One-period state contingent real debt

❑ Government provides unemployment benefits

❑ Rather than assuming χ is “home production”

❑ Resource constraint

❑ = govt budget constraint + hh budget constraint

❑ Assuming χ is govt-financed allows it to drop out of resource constraint

❑ Makes model more comparable to existing Ramsey models 

❑ Precise nature of χ (ue benefit?  home production? value of 
leisure?) not typically specified in DSGE matching models

❑ Model articulates both ue benefit and value of leisure
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PRIVATE-SECTOR EQUILIBRIUM

Model

❑ Stochastic processes                                      that satisfy

❑ Household’s bond Euler equation

❑ Vacancy-creation condition

❑ Labor force participation condition

❑ Nash wage outcome

❑ Law of motion for employment

❑ Present-value government budget constraint (key condition in Ramsey 
models)

❑ Resource constraint

❑ Given processes 
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RAMSEY PROBLEM

Ramsey Problem

❑ Ramsey problem – “Hybrid” Approach
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RAMSEY PROBLEM

Ramsey Problem

❑ Ramsey problem – “Hybrid” Approach
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CALIBRATION

Exogenous-Policy Analysis

❑ Baseline calibration

❑ So that exogenous policy (non-Ramsey) equilibrium broadly matches 
U.S. labor market fluctuations

❑ Preferences and key parameters

❑ Participation (labor supply) elasticity (ι = 0.18)

❑ Low worker bargaining power (η = 0.05)

❑ High unemployment benefit (98% of real wage)
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The two key parameters 
of HM calibration
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CALIBRATION

Exogenous-Policy Analysis

❑ Baseline calibration

❑ So that exogenous policy (non-Ramsey) equilibrium broadly matches 
U.S. labor market fluctuations

❑ Preferences and key parameters

❑ Participation (labor supply) elasticity (ι = 0.18)

❑ Low worker bargaining power (η = 0.05)

❑ High unemployment benefit (98% of real wage)

❑ Rest of parameters, matching-related and otherwise, standard

❑ β = 0.99

❑ ρ = 0.10

❑ ξ = 0.40

❑ AR(1) parameters for LOMs for TFP and government spending

❑ Etc.
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The two key parameters 
of HM calibration
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DYNAMICS

Results

Calibration Calibration

HM
0% 
and 

Hosios
HM

Labor Tax Rate

Mean 11% 22% 22%

Rel SD 5.6 0 1.4 1.4

Market 
tightness (θ)

Rel SD 1.1 1.1 10.9 11.3

Vacancies Rel SD 1.3 1.3 6.9 6.3

Unemployment

LFP

Rel SD 1.4 1.4 5.4 5.2

Rel SD 0.13 0.13 0.20 0.20

Real wage Rel SD 0.52

Static wedge SD (%) 0.08 0 22.9

Intertemporal 
wedge

SD (%) 0 0 12.3

Ramsey Exogenous Policy 
Benchmark

Data

Gertler and Trigari
(2009 JPE)
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DYNAMICS

Results

Calibration Calibration

HM
0% 
and 

Hosios
HM

Labor Tax Rate

Mean 11% 22% 22%

Rel SD 5.6 0 1.4 1.4

Market 
tightness (θ)

Rel SD 1.1 1.1 10.9 11.3

Vacancies Rel SD 1.3 1.3 6.9 6.3

Unemployment

LFP

Rel SD 1.4 1.4 5.4 5.2

Rel SD 0.13 0.13 0.20 0.20

Real wage Rel SD 0.28 0.52

Static wedge SD (%) 0.08 0 22.9

Intertemporal 
wedge

SD (%) 0 0 12.3

Ramsey Exogenous Policy 
Benchmark

Data

Gertler and Trigari
(2009 JPE)
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DYNAMICS

Results

Calibration Calibration

HM
0% 
and 

Hosios
HM

Labor Tax Rate

Mean 11% 22% 22%

Rel SD 5.6 0 1.4 1.4

Market 
tightness (θ)

Rel SD 1.1 1.1 10.9 11.3

Vacancies Rel SD 1.3 1.3 6.9 6.3

Unemployment

LFP

Rel SD 1.4 1.4 5.4 5.2

Rel SD 0.13 0.13 0.20 0.20

Real wage Rel SD 0.50 0.28 0.52

Static wedge SD (%) 0.08 0 22.9

Intertemporal 
wedge

SD (%) 0 0 12.3

Ramsey Exogenous Policy 
Benchmark

Data

Gertler and Trigari
(2009 JPE)
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DYNAMICS

Results

❑ Ramsey fluctuations IDENTICAL to efficient fluctuations for ANY (η, 
χ) pair

❑ In terms of fluctuations around a given steady state

❑ Steady-state levels of (τn, τs) depend on (η, χ) pair
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DYNAMICS

Results

❑ Ramsey fluctuations IDENTICAL to efficient fluctuations for ANY (η, 
χ) pair

❑ In terms of fluctuations around a given steady state

❑ Steady-state levels of (τn, τs) depend on (η, χ) pair

❑ Interpretation:  Ramsey government always ensures efficient labor-
market fluctuations (vt, st, θt)

❑ By appropriately adjusting (τn, τs) over the business cycle
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Results

Calibration Calibration

HM
0% 
and 

Hosios
HM

Labor Tax Rate

Mean 11% 15% 22% 22%

Rel SD 5.6 0 1.4 1.4

Market 
tightness (θ)

Rel SD 1.1 1.1 10.9 11.3

Vacancies Rel SD 1.3 1.3 6.9 6.3

Unemployment

LFP

Rel SD 1.4 1.4 5.4 5.2

Rel SD 0.13 0.13 0.20 0.20

Real wage Rel SD 0.50 1.1 0.28 0.52

Static wedge SD (%) 0.08 0 22.9

Intertemporal 
wedge

SD (%) 0 0 12.3

Ramsey Exogenous Policy 
Benchmark

Data

Gertler and Trigari
(2009 JPE)
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DYNAMICS

Results

❑ Ramsey fluctuations IDENTICAL to efficient fluctuations for ANY (η, 
χ) pair

❑ In terms of fluctuations around a given steady state

❑ Steady-state levels of (τn, τs) depend on (η, χ) pair

❑ Interpretation:  Ramsey government always ensures efficient labor-
market fluctuations (vt, st, θt)

❑ By appropriately adjusting (τn, τs) over the business cycle

❑ Wedge dynamics?

❑ Ramsey smooths both static wedge….

❑ …and intertemporal wedge
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Rel SD 1.4 1.4 5.4 5.2

Rel SD 0.13 0.13 0.20 0.20

Real wage Rel SD 0.50 1.1 0.28 0.52

Static wedge SD (%) 0.08 0 22.9 0.66

Intertemporal 
wedge

SD (%) 0 0 12.3 0.63

Ramsey Exogenous Policy 
Benchmark

Data

Gertler and Trigari
(2009 JPE)
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STATIC AND INTERTEMPORAL CONDITIONS

Wedges

❑ Efficiency characterized by

❑ Decentralized equilibrium conditions characterized by
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To obtain zero static wedge in every period, 
need τn = τs = 0 in every period, η = ξ, χ = 0  
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To obtain zero static wedge in every period, 
need τn = τs = 0 in every period, η = ξ, χ = 0  

To obtain zero intertemporal wedge in every period, 
need τn = τs = 0 in every period, η = ξ, χ = 0  

(See eqn. (29) for 
intertemporal wedge)



February 15, 2019 107

CONCLUSIONS

Summary

❑ Labor tax smoothing not optimal in DSGE search and matching model

❑ Calibrated to match key labor market dynamics under exogenous tax policy

❑ Rigid real wage (delivered through Nash-Hosios bargaining as benchmark) 
the important feature of the model

❑ Result conditional on Cobb-Douglas m(.) and Nash bargaining
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CONCLUSIONS

Summary

❑ Labor tax smoothing not optimal in DSGE search and matching model

❑ Calibrated to match key labor market dynamics under exogenous tax policy

❑ Rigid real wage (delivered through Nash-Hosios bargaining as benchmark) 
the important feature of the model

❑ Result conditional on Cobb-Douglas m(.) and Nash bargaining

❑ But wedge smoothing IS optimal

❑ Basic Ramsey theory

❑ Irrespective of wage model and particular matching process

❑ Ramsey fluctuations in allocations efficient regardless of calibration

❑ Welfare-relevant notions of wedges

❑ Matching-model concepts of efficiency and MRTs for use in virtually any 
matching application

❑ Could think of “labor wedge” as featuring both static and intertemporal 
dimensions

❑ Use as framework to empirically measure labor wedges
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❑ Construct model-consistent transformation function
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TRANSFORMATION FUNCTION

Efficiency

❑ Construct model-consistent transformation function

“The production set is taken as a primitive datum of the theory…If [the transformation function] F(·) is 
differentiable, and if the production vector y satisfies F(y) = 0, then for any commodities l and k, the ratio

is called the marginal rate of transformation (MRT) of good l for good k at vector y… 

…A  single-output technology is commonly described by means of a production function f(z)…Holding the 
level of output fixed, we can define the marginal rate of technical substitution (MRTSl,k) … Note that MRTSl,k

is simply a renaming of the marginal rate of transformation…in the special case of a single-output 
technology.”

Microeconomic Theory, Mas-Colell, Whinston, and Green (p. 128 – 130)
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differentiable, and if the production vector y satisfies F(y) = 0, then for any commodities l and k, the ratio

is called the marginal rate of transformation (MRT) of good l for good k at vector y… 

…A  single-output technology is commonly described by means of a production function f(z)…Holding the 
level of output fixed, we can define the marginal rate of technical substitution (MRTSl,k) … Note that MRTSl,k

is simply a renaming of the marginal rate of transformation…in the special case of a single-output 
technology.”

Microeconomic Theory, Mas-Colell, Whinston, and Green (p. 128 – 130)

❑ RBC model

❑ Does one-unit decrease in 1-nt affect ct? 

❑ If so, how?

❑ Does one-unit decrease in ct affect ct+1?

❑ If so, how?
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Efficiency

❑ Transformation function of RBC model

❑ One-unit decrease in 1-nt → one-unit increase in nt

❑ One-unit increase in nt→ output increases by ztfn(kt,nt) units

Goods resource 
constraint  
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- (1-d )k

t
= z

t
f k

t
,n

t( )
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Efficiency

❑ Transformation function of RBC model

❑ One-unit decrease in 1-nt → one-unit increase in nt

❑ One-unit increase in nt→ output increases by ztfn(kt,nt) units

❑ Increase of output by ztfn(kt,nt) units → ct increases by ztfn(kt,nt) units 

Goods resource 
constraint  

c
t
+ g

t
+ k

t+1
- (1-d )k

t
= z

t
f k

t
,n

t( )

TRANSFORMATION FUNCTION
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Efficiency

❑ Transformation function of RBC model (between t and t + 1)

❑ One-unit decrease in ct → one-unit increase in kt+1

❑ One-unit increase in kt+1→ output increases by zt+1fk(kt+1,nt+1) units 

❑ Increase of output by zt+1fk(kt+1,nt+1) units 

TRANSFORMATION FUNCTION

1 (1 ) , )(t tt t t t tc k kg z k nf++ + − − = 1 1 11 2 1 1(1 ) , )( tt t t t t tk kc g k f nz ++ + + + + ++ + − − =
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❑ Transformation function of RBC model (between t and t + 1)

❑ One-unit decrease in ct → one-unit increase in kt+1

❑ One-unit increase in kt+1→ output increases by zt+1fk(kt+1,nt+1) units 

❑ Increase of output by zt+1fk(kt+1,nt+1) units 

❑ → ct+1 increases by 

TRANSFORMATION FUNCTION

1 (1 ) , )(t tt t t t tc k kg z k nf++ + − − = 1 1 11 2 1 1(1 ) , )( tt t t t t tk kc g k f nz ++ + + + + ++ + − − =

1, 1 1 11 ( , )
t tc c t k t tMRT z f k n 

+ + + + + −
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