TAX SMOOTHING IN FRICTIONAL LABOR MARKETS

APRIL 13, 2017

Tax Smoothing

- □ Ramsey wants to keep these wedges constant
- □ Result and intuition depend on neoclassical view of labor markets
 - Labor tax is the only wedge → tax-smoothing is wedge-smoothing
- Question: Is tax smoothing optimal in search and matching labor markets?

OVERVIEW OF MODEL

Infinitely-lived representative household, measure one of membe					
	Employed members Unemployed members Full consumption insurance – standard in DSGE labor search				
	Members outside the labor force ("leisure") Incompleteness of government debt markets NOT driving our results (Aiyagari et al (2002 JPE))				
Exo	genous stochastic government spending				
	Financed via labor income taxation and one-period real state-contingent debt				
	Government provides unemployment benefits				
	Government provides vacancy subsidies				
	☐ For completeness of tax instruments (Ramsey issue)				
Lab	or market with matching frictions and wage-setting frictions				
Only an extensive labor margin, no intensive labor margin					
Timing: "instantaneous production"					

OVERVIEW OF MODEL

Period t-1 Period t Period t+1

Unemployed are the unsuccessful searchers: $ue_t = (1-p_t)s_t$

 \Box p_t = probability an individual finds a job and begins working immediately

HOUSEHOLD OPTIMIZATION

■ Maximize expected lifetime utility

$$\max_{\{c, n_t, s_t, b_t\}} E_0 \sum_{t=0}^{\infty} \beta^t \left[u(c_t) - h((1-p_t)s_t + n_t) \right]$$

s.t.

disutility of employment + unsuccessful search

$$c_{\scriptscriptstyle t} + b_{\scriptscriptstyle t} = \underbrace{n_{\scriptscriptstyle t} (1 - \tau_{\scriptscriptstyle t}^{\scriptscriptstyle n}) w_{\scriptscriptstyle t}}_{t} + \underbrace{(1 - p_{\scriptscriptstyle t}) s_{\scriptscriptstyle t} \chi}_{t} + R_{\scriptscriptstyle t} b_{\scriptscriptstyle t-1} + \underbrace{(1 - \tau^{\scriptscriptstyle d}) d_{\scriptscriptstyle t}}_{t} \quad \text{Flow budget constraint}$$

measure *n* earn aftertax wage income measure ue = (1-p)sreceive ue benefit χ (government financed) Baseline analysis: set $\tau^d = 1 \rightarrow$ no profit-taxation issues driving results

HOUSEHOLD OPTIMIZATION

Maximize expected lifetime utility

$$\max_{\{c, n_t, s_t, b_t\}} E_0 \sum_{t=0}^{\infty} \beta^t \left[u(c_t) - h((1-p_t)s_t + n_t) \right]$$

s.t.

disutility of employment + unsuccessful search

$$c_{t} + b_{t} = \underbrace{n_{t}(1 - \tau_{t}^{n})w_{t}}_{t} + \underbrace{(1 - p_{t})s_{t}\chi}_{t} + R_{t}b_{t-1} + \underbrace{(1 - \tau^{d})d_{t}}_{t}$$
 Flow budget constraint

measure *n* earn aftertax wage income

measure ue = (1-p)sreceive ue benefit χ (government financed)

Baseline analysis: set $\tau^d = 1 \rightarrow no$ profit-taxation issues driving results

$$n_t = (1 - \rho)n_{t-1} + s_t p_t$$

Perceived LOM for employment ("instantaneous production")

relationships terminate

(exogenous) measure of flow of new employment relationships = pre-existing employment measure of searchers s_t x probability a searcher successfully lands a job

FOCs with respect c_t , n_t ,

Households

☐ Household LFP condition (the labor supply condition!)

$$\frac{h'(lfp_{t})}{u'(c_{t})} = p_{t} \left[(1 - \tau_{t}^{n})w_{t} + (1 - \rho)E_{t} \left\{ \Xi_{t+1|t} \left(\frac{1 - p_{t+1}}{p_{t+1}} \right) \left(\frac{h'(lfp_{t+1})}{u'(c_{t+1})} - \chi \right) \right\} \right] + (1 - p_{t})\chi$$

- \square MRS between lfp_t and c_t = expected payoff of searching
 - □ Unemployment benefit (with probability $1 p_t$)
 - \Box After-tax wage + continuation value (with probability p_t)

Households

☐ Household LFP condition (the labor supply condition!)

$$\frac{h'(lfp_{t})}{u'(c_{t})} = p_{t} \left[(1 - \tau_{t}^{n})w_{t} + (1 - \rho)E_{t} \left\{ \Xi_{t+1|t} \left(\frac{1 - p_{t+1}}{p_{t+1}} \right) \left(\frac{h'(lfp_{t+1})}{u'(c_{t+1})} - \chi \right) \right\} \right] + (1 - p_{t})\chi$$

- \square MRS between lfp_t and c_t = expected payoff of searching
 - □ Unemployment benefit (with probability $1 p_t$)
 - \Box After-tax wage + continuation value (with probability p_t)

To recover standard labor supply function (e.g., RBC)

- 1. $\rho = 1$ (all employment relationships terminate at end of every period)
- 2. p = 1 (probability a searcher finds a job)
- 3. $\chi = 0$ (no ue benefit because no notion of "ue")

$$\frac{h'(lfp_t)}{u'(c_t)} = (1 - \tau_t^n) w_t$$

FIRMS

- Production
 - Requires a matched job-worker pair: posting cost γ per vacancy
 - □ Individual job *i* produces $y_{it} = z_t$
 - Aggregate output $y_t = n_t z_t$ (symmetry across jobs)
- □ Dynamic profit-maximization problem

Ensures completeness of tax instruments

$$\max_{\{n_t, v_t\}} \sum_{t=0}^{\infty} \Xi_{t|0} \left[z_t n_t - w_t n_t - (1 - \tau_t^s) \gamma v_t \right]$$

$$n_{t} = (1 - \rho)n_{t-1} + v_{t}q_{t}$$

Firm's perceived LOM for total employment ("instantaneous hiring")

(exogenous) measure of pre-existing employment relationships terminate

flow of new employment relationships = # job-openings x probability an opening attracts a searching individual

FIRMS

- Production
 - \square Requires a matched job-worker pair: posting cost γ per vacancy
 - □ Individual job *i* produces $y_{it} = z_t$
 - □ Aggregate output $y_t = n_t z_t$ (symmetry across jobs)
- □ Dynamic profit-maximization problem

Ensures completeness of tax instruments

$$\max_{\{n_t, v_t\}} \sum_{t=0}^{\infty} \Xi_{t|0} \left[z_t n_t - w_t n_t - (1 - \tau_t^s) \gamma v_t \right]$$

$$n_t = (1 - \rho)n_{t-1} + v_t q_t$$

Firm's perceived LOM for total employment ("instantaneous hiring")

(exogenous) measure of pre-existing employment relationships terminate

flow of new employment relationships = # job-openings x probability an opening attracts a searching individual

■ Vacancy-creation condition

$$\frac{\gamma(1-\tau_{t}^{s})}{q_{t}} = z_{t} - w_{t} + (1-\rho)E_{t} \left[\Xi_{t+1|t} \frac{\gamma(1-\tau_{t+1}^{s})}{q_{t+1}} \right]$$

cost of posting vacancy (inclusive of subsidy or tax)

benefit of posting vacancy

LABOR MARKET

- □ Labor-market tightness $\theta_t = v_t/u_t$
 - ☐ Important aggregate variable in matching-based models
 - \square Matching probabilities p and q depend only on θ given CRTS matching
 - Key statistic for matching efficiency

LABOR MARKET

- □ Labor-market tightness $\theta_t = v_t/u_t$
 - ☐ Important aggregate variable in matching-based models
 - \square Matching probabilities p and q depend only on θ given CRTS matching
 - Key statistic for matching efficiency
- □ Matching function $m(s_t, v_t) = \psi s_t^{\xi} v_t^{1-\xi}$
- LOM for aggregate employment $n_t = (1 \rho)n_{t-1} + m(s_t, v_t)$
- Nash bargaining over wage payment solves

$$\max_{w_t} \left(\mathbf{W}_t - \mathbf{U}_t \right)^{\eta} \mathbf{J}_t^{1-\eta} \qquad \longrightarrow \qquad \frac{\mathbf{W}_t - \mathbf{U}_t}{1 - \tau_t^n} = \frac{\eta}{1 - \eta} \mathbf{J}_t$$

Gain to household of successfully forming another employment relationship Value to firm of hiring another worker

$$w_{t} = \eta z_{t} + (1 - \eta) \frac{\chi}{1 - \tau_{t}^{n}} + \eta (1 - \rho) E_{t} \left\{ \Xi_{t+1|t} \left[1 - (1 - p_{t+1}) \frac{1 - \tau_{t+1}^{n}}{1 - \tau_{t}^{n}} \right] \frac{\gamma (1 - \tau_{t+1}^{s})}{q_{t+1}} \right\}$$

GOVERNMENT AND RESOURCE FRONTIER

- Exogenous government spending financed via
 - □ Labor income tax
 - ☐ One-period state contingent real debt

$$\tau_{t}^{n} w_{t} n_{t} + b_{t} + \tau^{d} d_{t} = g_{t} + R_{t} b_{t-1} + (1 - p_{t}) s_{t} \chi + \tau_{t}^{s} \gamma v_{t}$$

- ☐ Government provides unemployment benefits
 - \square Rather than assuming χ is "home production"

GOVERNMENT AND RESOURCE FRONTIER

- □ Exogenous government spending financed via
 - □ Labor income tax
 - ☐ One-period state contingent real debt

$$\tau_{t}^{n} w_{t} n_{t} + b_{t} + \tau^{d} d_{t} = g_{t} + R_{t} b_{t-1} + (1 - p_{t}) s_{t} \chi + \tau_{t}^{s} \gamma v_{t}$$

- Government provides unemployment benefits
 - \square Rather than assuming χ is "home production"
- ☐ Resource constraint

$$c_t + g_t + \gamma v_t = z_t n_t$$

- **□** = govt budget constraint + hh budget constraint
- \square Assuming χ is govt-financed allows it to drop out of resource constraint
 - Makes model more comparable to existing Ramsey models

GOVERNMENT AND RESOURCE FRONTIER

- □ Exogenous government spending financed via
 - □ Labor income tax
 - ☐ One-period state contingent real debt

$$\tau_{t}^{n} w_{t} n_{t} + b_{t} + \tau^{d} d_{t} = g_{t} + R_{t} b_{t-1} + (1 - p_{t}) s_{t} \chi + \tau_{t}^{s} \gamma v_{t}$$

- Government provides unemployment benefits
 - \square Rather than assuming χ is "home production"
- ☐ Resource constraint

$$c_t + g_t + \gamma v_t = z_t n_t$$

- **□** = govt budget constraint + hh budget constraint
- \square Assuming χ is govt-financed allows it to drop out of resource constraint
 - Makes model more comparable to existing Ramsey models
- Precise nature of χ (ue benefit? home production? value of leisure?) not typically specified in DSGE matching models
 - Our model articulates both ue benefit and value of leisure

PRIVATE-SECTOR EQUILIBRIUM

- \Box Stochastic processes $\left\{c_{t}, n_{t}, s_{t}, w_{t}, \theta_{t}, R_{t}, b_{t}\right\}_{t=0}^{\infty}$ that satisfy
 - → □ Household's bond Euler equation
 - □ Vacancy-creation condition
 - **□** Labor force participation condition
 - Nash wage outcome

 - ☐ Government budget constraint (key condition in Ramsey models)
 - Resource constraint $c_t + g_t + \gamma v_t = z_t n_t$
 - \Box Given processes $\left\{g_t, z_t, \tau_t^n, \tau_t^s\right\}_{t=0}^{\infty}$

Standard conditions in basic Ramsey models

CALIBRATION

- Baseline calibration
 - □ So that exogenous policy (non-Ramsey) equilibrium broadly matches U.S. labor market fluctuations
 - Preferences and key parameters

$$u(c_t) - h(lfp_t) = \ln c_t - \frac{\kappa}{1 + 1/t} lfp_t^{1 + 1/t}$$

- \square Participation (labor supply) elasticity (i = 0.18)
- □ Low worker bargaining power ($\eta = 0.05$)
- ☐ High unemployment benefit (98% of real wage)

The two key parameters of HM calibration

CALIBRATION

- □ Baseline calibration
 - □ So that exogenous policy (non-Ramsey) equilibrium broadly matches U.S. labor market fluctuations
 - Preferences and key parameters

$$u(c_t) - h(lfp_t) = \ln c_t - \frac{\kappa}{1 + 1/t} lfp_t^{1 + 1/t}$$

- \square Participation (labor supply) elasticity (i = 0.18)
- □ Low worker bargaining power ($\eta = 0.05$)
- ☐ High unemployment benefit (98% of real wage)

The two key parameters of HM calibration

- Rest of parameters, matching-related and otherwise, standard
 - $\Box \quad \boldsymbol{\beta} = 0.99$
 - \square $\rho = 0.10$
 - \Box $\xi = 0.40$
 - □ AR(1) parameters for LOMs for TFP and government spending
 - ☐ Etc.

		Ramsey		Exogenous Policy Benchmark		Data ∢	
		Calibration		Calibration			Gertler and Trigari (2009 <i>JPE</i>)
		0% HM and Hosios		<u>HM</u>			
Labor Tax Rate	Mean					22%	
Labor Tax Rate	Rel SD					1.4	
Market tightness (θ)	Rel SD					11.3	
Vacancies	Rel SD					6.3	
Unemployment	Rel SD					5.2	
LFP	Rel SD					0.20	
Real wage	Rel SD					0.52	
Static wedge	SD (%)						
Intertemporal wedge	SD (%)						

April 13, 2017 19

		Ramsey Exogenous Poli Benchmark				Data ◀	
		Calibration		Calibration			Gertler and Trigari (2009 <i>JPE</i>)
		HM and Hosios		<u>HM</u>			
Labor Tax Rate	Mean	11%		22%		22%	
Labor Tax Rate	Rel SD	5.6		1.4		1.4	
Market tightness (θ)	Rel SD	1.1		10.9		11.3	
Vacancies	Rel SD	1.3		6.9		6.3	
Unemployment	Rel SD	1.4		5.4		5.2	
LFP	Rel SD	0.13		0.20		0.20	
Real wage	Rel SD	0.50		0.28		0.52	
Static wedge	SD (%)						
Intertemporal wedge	SD (%)						

April 13, 2017 20

- Ramsey fluctuations IDENTICAL to efficient fluctuations for ANY (η , χ) pair
 - ☐ In terms of fluctuations around a given steady state
 - □ Steady-state levels of (τ^n, τ^s) depend on (η, χ) pair

- Ramsey fluctuations IDENTICAL to efficient fluctuations for ANY (η , χ) pair
 - ☐ In terms of fluctuations around a given steady state
 - □ Steady-state levels of (τ^n, τ^s) depend on (η, χ) pair
- Interpretation: Ramsey government always ensures efficient labormarket fluctuations (v_t, s_t, θ_t)
 - \square By appropriately adjusting (τ^n, τ^s) over the business cycle

		Ramsey		Exogenous Policy Benchmark		Data ←	
		Calibration		Calibration			Gertler and Trigari (2009 <i>JPE</i>)
		0% HM and Hosios		<u>HM</u>			
Labor Tax Rate	Mean	11%	15%	22%		22%	
Labor Tax Rate	Rel SD	5.6	0	1.4		1.4	
Market tightness (θ)	Rel SD	1.1	1.1	10.9		11.3	
Vacancies	Rel SD	1.3	1.3	6.9		6.3	
Unemployment	Rel SD	1.4	1.4	5.4		5.2	
LFP	Rel SD	0.13	0.13	0.20		0.20	
Real wage	Rel SD	0.50	1.1	0.28		0.52	
Static wedge	SD (%)						
Intertemporal wedge	SD (%)						

April 13, 2017 24

Ramsey fluctuations IDENTICAL to efficient fluctuations for ANY (η, χ) pair						
☐ In terms of fluctuations around a given steady state						
\square Steady-state levels of (τ^n, τ^s) depend on (η, χ) pair						
Interpretation: Ramsey government always ensures efficient labor- market fluctuations (v_t, s_t, θ_t)						
\square By appropriately adjusting (τ^n, τ^s) over the business cycle						
Wedge dynamics						
☐ Ramsey smooths both static wedge						

April 13, 2017 25

...and intertemporal wedge

		Ran	nsey	Exogenous Policy Benchmark		Data ∢	
		Calibration		Calibration			Gertler and Trigari (2009 <i>JPE</i>)
		0% HM and Hosios		<u>HM</u>	0% and Hosios		
Labor Tax Rate	Mean	11%	15%	22%		22%	
Labor Tax Rate	Rel SD	5.6	0	1.4		1.4	
Market tightness (θ)	Rel SD	1.1	1.1	10.9		11.3	
Vacancies	Rel SD	1.3	1.3	6.9		6.3	
Unemployment	Rel SD	1.4	1.4	5.4		5.2	
LFP	Rel SD	0.13	0.13	0.20		0.20	
Real wage	Rel SD	0.50	1.1	0.28		0.52	
Static wedge	SD (%)	0.08	0	22.9	0.66		
Intertemporal wedge	SD (%)	0	0	12.3	0.63		

April 13, 2017 26

STATIC AND INTERTEMPORAL CONDITIONS

☐ Efficiency characterized by

$$\frac{h'(lfp_{t})}{u'(c_{t})} = \frac{\gamma m_{s}(s_{t}, v_{t})}{m_{v}(s_{t}, v_{t})} = \frac{u'(c_{t})}{\beta u'(c_{t+1})} = \frac{(1-\rho)\left(\frac{\gamma}{m_{v}(s_{t+1}, v_{t+1})}\right)(1-m_{s}(s_{t+1}, v_{t+1}))}{\frac{\gamma}{m_{v}(s_{t}, v_{t})} - z_{t}}$$

Decentralized equilibrium conditions characterized by

$$\frac{h'(lfp_t)}{u'(c_t)} = \left[\frac{\chi(1-\xi)}{\gamma \cdot \xi \cdot \theta_t} + (1-\tau_t^n)(1-\tau_t^s)\frac{\eta(1-\xi)}{\xi(1-\eta)}\right] \gamma \theta_t \frac{\xi}{1-\xi}$$

= wedge between static MRS_t and static MRT_t

To obtain zero static wedge in every period, need $\tau^n = \tau^s = 0$ in every period, $\eta = \xi$, $\chi = 0$

STATIC AND INTERTEMPORAL CONDITIONS

☐ Efficiency characterized by

$$\frac{h'(lfp_t)}{u'(c_t)} = \frac{\gamma m_s(s_t, v_t)}{m_v(s_t, v_t)}$$
$$= \gamma \theta_t \frac{\xi}{1 - \xi}$$

$$\frac{u'(c_t)}{\beta u'(c_{t+1})} = \frac{(1-\rho)\left(\frac{\gamma}{m_v(s_{t+1},v_{t+1})}\right)\left(1-m_s(s_{t+1},v_{t+1})\right)}{\frac{\gamma}{m_v(s_t,v_t)} - z_t}$$

Decentralized equilibrium conditions characterized by

$$\frac{h'(lfp_t)}{u'(c_t)} = \left[\frac{\chi(1-\xi)}{\gamma \cdot \xi \cdot \theta_t} + (1-\tau_t^n)(1-\tau_t^s)\frac{\eta(1-\xi)}{\xi(1-\eta)}\right] \gamma \theta_t \frac{\xi}{1-\xi}$$

(See eqn. (29) for intertemporal wedge)

= wedge between static MRS_t and static MRT_t

To obtain zero static wedge in every period, need $\tau^n = \tau^s = 0$ in every period, $\eta = \xi$, $\chi = 0$

To obtain zero intertemporal wedge in every period, need $\tau^n = \tau^s = 0$ in every period, $\eta = \xi$, $\chi = 0$

CONCLUSIONS

- Labor tax smoothing not optimal in DSGE search and matching model
 - Calibrated to match key labor market dynamics under exogenous tax policy
 - Rigid real wage (delivered through Nash-Hosios bargaining as benchmark) the important feature of the model
- But wedge smoothing IS optimal
 - Basic Ramsey theory
- □ Ramsey fluctuations in allocations efficient regardless of calibration

CONCLUSIONS

Labor tax smoothing not optimal in DSGE search and matching model
 Calibrated to match key labor market dynamics under exogenous tax policy
☐ Rigid real wage (delivered through Nash-Hosios bargaining as benchmark) the important feature of the model
But wedge smoothing IS optimal Basic Ramsey theory
Ramsey fluctuations in allocations efficient regardless of calibration
Welfare-relevant notions of wedges ☐ Developing matching-model concepts of efficiency and MRTs for use in virtually any matching application
Could think of "labor wedge" as featuring both static and intertemporal dimensions
☐ Use as framework to empirically measure labor wedges (in progress)

April 13, 2017 30