Project 3 Professor Sanjay Chugh Spring 2018 ## **Ramsey Optimal Fiscal Policy** As per Ramsey (1927) and the ensuing DSGE macro-Ramsey fiscal policy literature that began in the 1980's, the government has exogenous government spending that has to be financed using state-contingent real government debt and linear income taxes on labor income and capital income – lump-sum taxes are assumed to be unavailable. The functional forms for period-t utility and period-t production of goods are $u(c_t, n_t) = \ln c_t - \frac{\varphi}{1+1/\psi} n_t^{1+1/\psi}$ and $f(k_t, n_t) = z_t k_t^{\vartheta} n_t^{1-\vartheta}$, and the goods resource constraint for the economy is $c_t + k_{t+1} - (1-\delta)k_t = z_t k_t^{\vartheta} n_t^{1-\vartheta}$. The household's period-t budget constraint is $$c_{t} + \sum_{j} \frac{1}{R_{t}^{j}} b_{t+1}^{j} + k_{t+1} = (1 - \tau_{t}^{n}) w_{t} n_{t} + \left[1 + (1 - \tau_{t}^{k}) (r_{t} - \delta) \right] k_{t} + b_{t},$$ in which τ_t^n is the proportional labor income tax rate, τ_t^k is the proportional capital income tax rate (inclusive of a depreciation allowance), and the vector $b_{t+1}^j \ \forall j$ is holdings of state-contingent real government debt that pays off in period t+1. The steady-state value of government purchases (\overline{g}) is 20% of steady-state GDP, the initial (as well as long-run) government debt (b_0) is 50% of steady-state GDP, and the steady-state level of TFP is $\overline{z} = 1$. The exogenous TFP process evolves as $$\ln z_{t+1} = \rho_z \ln z_t + \varepsilon_{t+1}^z,$$ in which ε_{t+1}^z is distributed as i.i.d. $N(0, \sigma_z^2)$. The persistence and standard deviation parameters are, respectively $\rho_z = 0.95$ and $\sigma_z = 0.007$. The exogenous government spending process evolves as $$\ln g_{t+1} = (1 - \rho_g) \ln \overline{g} + \rho_g \ln g_t + \varepsilon_{t+1}^g,$$ in which ε_{t+1}^g is distributed as i.i.d. $N(0,\sigma_g^2)$. The persistence and standard deviation parameters are, respectively $\rho_{\rm g}=0.97$ and $\sigma_{\rm g}=0.027$. The remaining parameter values to be used (some of which are left for you to determine) are listed in Table 1. | | | Description | |-------|------|--| | β | 0.99 | Quarterly subjective discount factor | | δ | 0.02 | Quarterly depreciation rate of physical k | | Ψ | 2 | Utility parameter | | α | 0.36 | Elasticity of Cobb-Douglas output with respect to physical k | | φ | ??? | To be determined (target so that n in Ramsey steady state is $n = 0.3$) | | g | ??? | To be determined (target so that \overline{g} is 20% of Ramsey steady-state GDP) | | b_0 | ??? | To be determined (target so that b_0 is 50% of Ramsey steady-state GDP) | Table 1. Parameter values. For the first-order approximation, use $x_t = [k_t, z_t, g_t]'$ as the state vector, $y_t = [c_t, n_t, w_t, wedge_t^n, inv_t, \tau_t^n]'$ as the co-state vector, and assume that the Ramseyoptimal capital income tax rate is $au_t^k = au_{ss}^k \ orall t$. ## What To Submit - A clear, concise definition of the (dynamic stochastic) private-sector equilibrium. - A clear, concise definition of the (dynamic stochastic) Ramsey equilibrium. (Note: The definition of the Ramsey equilibrium is **not** identical to the definition of the private-sector equilibrium.) - One clearly organized, easy-to-read Table containing the parameter values $(\varphi, \overline{g}, b_0)$. - One clearly organized, easy-to-read Table containing the Ramsey-optimal steadystate values of: the labor income tax rate, the capital income tax rate, the labor wedge $wedge^n$, the capital wedge $wedge^k$, the Lagrange multiplier on the PVIC, gross domestic output, consumption, investment, and labor. - The g_x and h_x matrices that correspond to the Ramsey optimal policy functions. - **One** plot that contains **both** the average Ramsey-optimal labor income tax rate τ_t^n and the average Ramsey-optimal labor income wedge wedge, across 200 simulations of the Ramsey economy (each simulation will be 200 periods in length). - Include your code (i.e., all the relevant files that one would need to replicate your results).