THE FINANCIAL ACCELERATOR: FINANCIAL MARKETS AND THE MACROECONOMY

APRIL 16, 2012

Introduction

FINANCIAL ACCELERATOR

- "Financial accelerator" framework
 - ☐ The most widely-used and applied framework in macroeconomic theory and policy for thinking about financial markets
 - ☐ Developed in series of studies by Bernanke and Gertler in late 1980's and early 1990's
- □ Popular-press language
 - □ "Financial accelerator"
 - "Financial feedback loops"
 - □ "Loan spirals"
- Describes well many of the financial-macroeconomic linkages underpinning the dynamics of
 - □ The Great Depression
 - □ Current macroeconomic conditions

Introduction FINANCIAL ACCELERATOR "Financial accelerator" framework The most widely-used and applied framework in macroeconomic theory and policy for thinking about financial markets Developed in series of studies by Bernanke and Gertler in late 1980's and early 1990's Popular-press language "Financial accelerator" "Financial feedback loops" "Loan spirals" Describes well many of the financial-macroeconomic linkages underpinning the dynamics of **The Great Depression Current macroeconomic conditions** Will develop idea in context of firm theory Can also develop idea in context of consumer theory

Recall "credit constraint" analysis of consumption/savings decisions

Introduction

OUTLINE OF FRAMEWORK

April 16, 2012

Major ideas underlying Financial Accelerator Framework

- Firms' financial assets (i.e., stocks and bonds) matter for their ability to purchase physical assets (i.e., machines and equipment)
- Market prices of financial assets matter for firm financing constraints
- Government regulation affects the linkage between financial markets and real (i.e., goods and physical capital) markets through financing constraints

April 16, 2012 4

Introduction

OUTLINE OF FRAMEWORK

Four Building Blocks of the Financial Accelerator Framework

- 1. Two-Period Model of Firm Profit Maximization
 - □ Based on Chapter 6
 - Enriched to allow for both physical assets (machines and equipment) and financial assets (stocks and bonds)
- 2. Financing Constraint conceptually the key building block
 - Quantity of physical capital firms can purchase depends on the market value of their financial assets
 - □ Reflects market and regulatory structures designed to mitigate informational asymmetries
 - ☐ (Recall basic Chapter 6 theory of firms featured no constraints on firm profit maximization)

April 16, 2012

Introduction

OUTLINE OF FRAMEWORK

Four Building Blocks of the Financial Accelerator Framework

- 1. Two-Period Model of Firm Profit Maximization
 - □ Based on Chapter 6
 - Enriched to allow for both physical assets (machines and equipment) and financial assets (stocks and bonds)
- 2. Financing Constraint conceptually the key building block
 - Quantity of physical capital firms can purchase depends on the market value of their financial assets
 - Reflects market and regulatory structures designed to mitigate informational asymmetries
 - ☐ (Recall basic Chapter 6 theory of firms featured no constraints on firm profit maximization)
- 3. Government Regulation/Oversight of Financial Relationships
- 4. Relationship between Firm Profits and Dividends

Macro Fundamentals

RATES OF RETURN

- "Interest rates" can be defined for any type of asset
 - ☐ There is no <u>single</u> interest rate in the economy
- Interpret/understand the <u>two</u> types of "interest rates" that co-exist in this richer framework of firm profit maximization
 - \Box *i*: nominal interest rate on bonds
 - ☐ Recall from Chapter 14

$$1+i=\frac{1}{P_1^b}$$

Thus can think of bonds (one <u>type</u> of financial asset) as being in the background of the analysis

April 16, 2012

10

RATES OF RETURN

- ☐ "Interest rates" can be defined for any type of asset
 - ☐ There is no <u>single</u> interest rate in the economy
- Interpret/understand the <u>two</u> types of "interest rates" that co-exist in this richer framework of firm profit maximization
 - □ *i*: nominal interest rate on bonds
 - ☐ Recall from Chapter 14

$$1 + i = \frac{1}{P^b}$$

- Thus can think of bonds (one <u>type</u> of financial asset) as being in the background of the analysis
- □ i^{STOCK}: nominal return on stock i.e., "interest rate on stock" (though bad terminology)
 - ☐ Define according to

$$1 + i^{STOCK} = \frac{S_2 + D_2}{S_2}$$

 \square Measures the net dollar return (in period 2) on one share of stock (whose purchase price was S_1 in period 1)

April 16, 2012

Macro Fundamentals

RATES OF RETURN

- "Interest rates" can be defined for any type of asset
 - □ There is no <u>single</u> interest rate in the economy
- Interpret/understand the <u>two</u> types of "interest rates" that co-exist in this richer framework of firm profit maximization
 - ☐ i: nominal interest rate on bonds
 - ☐ Recall from Chapter 14

$$1+i = \frac{1}{P_1^b} \qquad \stackrel{\text{can rewrite}}{\blacktriangleleft} \qquad \qquad i = \frac{1}{P_1^b} - 1$$

- $\hfill\Box$ Thus can think of bonds (one \underline{type} of financial asset) as being in the background of the analysis
- $\hfill \hfill \hfill$
 - □ Define according to

$$1+i^{STOCK} = \frac{S_2 + D_2}{S_1} \qquad \stackrel{\text{can rewrite}}{\Longrightarrow} i^{STOCK} = \frac{S_2 + D_2}{S_1} - 1$$

Measures the net dollar return (in period 2) on one share of stock (whose purchase price was S_1 in period 1)

Macro Fundamentals

RATES OF RETURN

- "Interest rates" can be defined for any type of asset
 - There is no single interest rate in the economy
- Interpret/understand the \underline{two} types of "interest rates" that co-exist in this richer framework of firm profit maximization
 - i: nominal interest rate on bonds

Recall from Chapter 14

 $1+i=\frac{1}{P_i^b} \qquad \underbrace{\begin{array}{c} \text{can rewrite} \\ \text{as} \end{array}} \qquad i=\frac{1}{P_i^b}-1 \qquad \underbrace{\begin{array}{c} \text{express as} \\ \text{real interest rate} \end{array}}_{\text{real interest rate}}$

REAL INTEREST RATE ON GOVERNMENT BONDS: A "RISKLESS" ASSET

- Thus can think of bonds (one \underline{type} of financial asset) as being in the background of the analysis
- i^{STOCK} : nominal return on stock i.e., "interest rate on stock" (though bad terminology)

Define according to

 $1 + i^{STOCK} = \frac{S_2 + D_2}{S_1} \qquad \overset{\text{can rewrite}}{\Longrightarrow} \quad i^{STOCK} = \frac{S_2 + D_2}{S_1} - 1 \qquad \overset{\text{express as}}{\Longrightarrow} \quad 1 + r^{STOCK} = \frac{1 + i^{STOCK}}{1 + \pi}$

- Measures the net dollar return (in period 2) on one share of stock (whose purchase price was S_1 in period 1)
- Can distinguish two measures of real interest rates in this framework

April 16, 2012

Model Structure: Building Block 1

FIRM PROFIT FUNCTION

- A dynamic profit maximization problem
 - Because firm exists for both periods
 - All analysis conducted from the perspective of the very beginning of period 1
 - → Must consider present-discounted-value (PDV) of lifetime (i.e., two-period) profits
- Dynamic profit function
 - (specified in nominal terms could specify in real terms...)

 $P_1 f(k_1, n_1) + P_1 k_1 + (S_1 + D_1) a_0 - P_1 w_1 n_1 - P_1 k_2 - S_1 a_1$

Total labor Total cost of Total cost of buying physical capital for period 2 (time to build → must purchase period-2 capital in period 1)

April 16, 2012

Model Structure: Building Block 1 FIRM PROFIT FUNCTION A <u>dynamic</u> profit maximization problem Because firm exists for both periods All analysis conducted from the perspective of the very beginning of period 1 → Must consider present-discounted-value (PDV) of lifetime (i.e., two-period) **Dynamic profit function** (specified in nominal terms – could specify in real terms...) Period-1 profits $P_1f(k_1,n_1) + P_1k_1 + (S_1 + D_1)a_0 - P_1w_1n_1 - P_1k_2 - S_1a_1$ Value of pre-existing physical capital (an asset for firms) Total reven in period 1 (price x output) Total cost of buying <u>financial</u> assets (i.e., stock-holdings in other firms) for period 2 April 16, 2012 15

Finance Fundamentals

INFORMATIONAL ASYMMETRIES

- □ "Informational asymmetries" pervasive in borrowing/lending relationships
- Borrower (whether consumer, firm, or financial institution) <u>much</u> more likely to know his own ability/willingness to repay a loan
 - □ Lenders only know little about the "quality" or "trustworthiness" of a borrower
 □ Asymmetry of information cannot be eliminated
 - To all the bound of the formation of the
- ☐ To mitigate consequences of informational asymmetries, lenders often require borrower to have a stake in "succeeding" in the project/purpose for which funds are being borrowed
 - □ Consumers
 - □ e.g., down payment on house purchase
 - e.g., down payment on car purchase
 - If stop making payments on house or car
 - $\ \square$ Borrower loses down payment (in addition to the car or house...)...
 - Affects individual's incentives <u>before</u> borrowing

April 16, 2012

Finance Fundamentals

INFORMATIONAL ASYMMETRIES

- "Informational asymmetries" pervasive in borrowing/lending relationships
- Borrower (whether consumer, firm, or financial institution) <u>much</u> more likely to know his own ability/willingness to repay a loan
 - ☐ Lenders only know little about the "quality" or "trustworthiness" of a borrower
 - Asymmetry of information cannot be eliminated
- To mitigate consequences of informational asymmetries, lenders often require borrower to have a stake in "succeeding" in the project/purpose for which funds are being borrowed
 - □ Consumers
 - e.g., down payment on house purchase
 - □ e.g., down payment on car purchase
 - $\ \square$ Total amount of loan (typically) depends on individual's collateral
 - □ Firms

"Working capital"

- □ Capital investment (factories, technology upgrades, etc) outlays
 □ Pavroll outlays
- □ Financing inventories
- ☐ Total amount of loan (typically) depends on firm's collateral
- ☐ Financial institutions: borrow in order to make (big) loans
 - ☐ By raising "small" quantities of funds from many different sources

FINANCING CONSTRAINT

- Capture this idea through a financing constraint on firm's ability to purchase capital between period 1 and period 2
- ☐ Financing constraint
 - Total expenditures on period-1 physical investment must be equal to market value of firm's financial (stock) holdings
 - (Technically, smaller than or equal to, so an inequality constraint...but will formally analyze constraint with equality)

$$\begin{array}{ll} P_1 \cdot inv_1 = & S_1 \cdot a_1 \\ & \downarrow & \text{inv}_1 = k_2 - k_1 \text{ (investment is } \underline{change in } \text{ quantity of } \\ P_1 \cdot (k_2 - k_1) = & S_1 \cdot a_1 \end{array}$$

April 16, 2012

Model Structure: Building Block 2

FINANCING CONSTRAINT

- Capture this idea through a financing constraint on firm's ability to purchase capital between period 1 and period 2
- □ Financing constraint
 - Total expenditures on period-1 physical investment must be equal to market value of firm's financial (stock) holdings
 - (Technically, smaller than or equal to, so an inequality constraint...but will formally analyze constraint with equality)

$$\begin{array}{ll} P_{1} \cdot inv_{1} = & S_{1} \cdot a_{1} \\ & \downarrow & \text{inv}_{1} = \mathbf{k}_{2} - \mathbf{k}_{1} \text{ (investment is } \underline{change in} \text{ quantity of } \\ P_{1} \cdot (k_{2} - k_{1}) = & S_{1} \cdot a_{1} \end{array}$$

- ☐ Important: a_1 appears in the financing constraint, <u>not</u> a_0
 - Idea this assumption captures: firm might try to strategically manipulate the value of financial assets it holds in order to affect the quantity of physical investment it can engage in
 - □ (From the perspective of beginning of period 1, a_1 has not yet been chosen, whereas a_0 is pre-determined)

Model Structure: Building Block 3

GOVERNMENT OVERSIGHT OF FINANCIAL MARKETS

- Government oversight of informational asymmetries in borrower/ lender relationships
 - □ Filing of proper documentation
 - ☐ Full disclosure ("truth-in-lending") laws
 - □ Direct lending in some markets
 - **...**
- Capture government Regulation of financial dealings in our framework in very simple way
 - ☐ Firm can only borrow up to a multiple R of the market value of its financial assets for physical investment purposes
 - e.g., if government regulates that expenditures on investment cannot be larger than 5 times market value of financial assets, R = 5

April 16, 2012

Model Structure: Building Block 3

GOVERNMENT OVERSIGHT OF FINANCIAL MARKETS

- Government oversight of informational asymmetries in borrower/ lender relationships
 - ☐ Filing of proper documentation
 - ☐ Full disclosure ("truth-in-lending") laws
 - □ Direct lending in some markets
 - **-** ...

 \Box

- Capture government Regulation of financial dealings in our framework in very simple way
 - ☐ Firm can only borrow up to a multiple R of the market value of its financial assets for physical investment purposes
 - e.g., if government regulates that expenditures on investment cannot be larger than 5 times market value of financial assets, R = 5
- □ Terminology: R is leverage ratio
 - ☐ Will think of it as government regulation...
 - ...but can and does also reflect market and institutional arrangements

GOVERNMENT OVERSIGHT OF FINANCIAL MARKETS

- Capture this idea through a financing constraint on firm's ability to purchase capital between period 1 and period 2
- Financing constraint
 - Total expenditures on period-1 physical investment must be equal to market value of firm's financial (stock) holdings
 - (Technically, smaller than or equal to, so an inequality constraint...but will formally analyze constraint with equality)

April 16, 2012

Model Structure

FINANCIAL ACCELERATOR FRAMEWORK

Four Building Blocks of the Financial Accelerator Framework

$$P_{1}f(k_{1},n_{1}) + P_{1}k_{1} + (S_{1} + D_{1})a_{0} - P_{1}w_{1}n_{1} - P_{1}k_{2} - S_{1}a_{1} + \frac{P_{2}f(k_{2},n_{2})}{1+i} + \frac{P_{2}k_{2}}{1+i} + \frac{(S_{2} + D_{2})a_{1}}{1+i} - \frac{P_{2}w_{2}n_{2}}{1+i} - \frac{P_{2}k_{3}}{1+i} - \frac{S_{2}a_{3}}{1+i} - \frac{S_{2}$$

Financing Constraint

$$P_1 \cdot (k_2 - k_1) = S_1 \cdot a_1$$

Government Regulation of Financial Relationships (imposition of ${\it R}$ on financing constraint)

$$P_1 \cdot (k_2 - k_1) = \mathbf{R} \cdot S_1 \cdot a_1$$

Relationship between firm profits and dividends

LATER

April 16, 2012 24

FIRM PROFIT MAXIMIZATION

Maximize two-period profits

 $P_1f(k_1,n_1) + P_1k_1 + (S_1 + D_1)a_0 - P_1w_1n_1 - P_1k_2 - S_1a_1 + \frac{P_2f(k_2,n_2)}{1+i} + \frac{P_2k_2}{1+i} + \frac{(S_2 + D_2)a_1}{1+i} - \frac{P_2w_2n_2}{1+i} - \frac{P_2k_3}{1+i} - \frac{S_2a_2}{1+i}$

Subject to financing constraint

$$P_1 \cdot (k_2 - k_1) = R \cdot S_1 \cdot a_1$$

Construct Lagrangian

$$P_{1}f(k_{1},n_{1}) + P_{1}k_{1} + (S_{1} + D_{1})a_{0} - P_{1}w_{1}n_{1} - P_{1}k_{2} - S_{1}a_{1} + \frac{P_{2}f(k_{2},n_{2})}{1+i} + \frac{P_{2}k_{2}}{1+i} + \frac{(S_{2} + D_{2})a_{1}}{1+i} - \frac{P_{2}w_{2}n_{2}}{1+i} + \frac{A}{1+i} + \frac{A}{1+i} - \frac{A}{1+i}$$

Lagrange multiplier on financing constraint

CRUCIAL OBSERVATION: in basic firm theory (i.e., Chapter 6), value of this multiplier was....

April 16, 2012 2

Model Analysis

FIRM PROFIT MAXIMIZATION

Maximize two-period profits

$$P_{1}f(k_{1},n_{1}) + P_{1}k_{1} + (S_{1} + D_{1})a_{0} - P_{1}w_{1}n_{1} - P_{1}k_{2} - S_{1}a_{1} + \frac{P_{2}f(k_{2},n_{2})}{1+i} + \frac{P_{2}k_{2}}{1+i} + \frac{(S_{2} + D_{2})a_{1}}{1+i} - \frac{P_{2}w_{2}n_{2}}{1+i} - \frac{P_{2}k_{3}}{1+i} - \frac{S_{2}a_{3}}{1+i}$$

Subject to financing constraint

$$P_1 \cdot (k_2 - k_1) = R \cdot S_1 \cdot a_1$$

Construct Lagrangian

$$P_{1}f(k_{1},n_{1}) + P_{1}k_{1} + (S_{1} + D_{1})a_{0} - P_{1}w_{1}n_{1} - P_{1}k_{2} - S_{1}a_{1} + \frac{P_{2}f(k_{2},n_{2})}{1+i} + \frac{P_{2}k_{2}}{1+i} + \frac{(S_{2} + D_{2})a_{1}}{1+i} - \frac{P_{2}w_{2}n_{2}}{1+i} + \frac{\lambda[R \cdot S_{1} \cdot a_{1} - P_{1} \cdot (k_{2} - k_{1})]}{1+i}$$

- Lagrange multiplier on financing constraint

CRUCIAL OBSERVATION: in basic firm theory (i.e., Chapter 6), value of this multiplier was....

 $\lambda = 0$ i.e., there was no financing constraint!

LATER: will study which regulatory and/or market features make the financing constraint effectively "disappear" (i.e., cause $\lambda=0$)

FIRM PROFIT MAXIMIZATION

$$\begin{split} &P_{1}f(k_{1},n_{1}) + P_{1}k_{1} + (S_{1} + D_{1})a_{0} - P_{1}w_{1}n_{1} - P_{1}k_{2} - S_{1}a_{1} + \frac{P_{2}f(k_{2},n_{2})}{1+i} + \frac{P_{2}k_{2}}{1+i} + \frac{(S_{2} + D_{2})a_{1}}{1+i} - \frac{P_{2}w_{2}n_{2}}{1+i} \\ &\quad + \lambda \big[R \cdot S_{1} \cdot a_{1} - P_{1} \cdot (k_{2} - k_{1}) \big] \end{split}$$

□ FOCs with respect to n_1 , n_2

Identical except for time subscripts with respect to n_1 : $P_1f_n(k_1,n_1) - P_1w_1 = 0$ Equation 1 except for time subscripts with respect to n_2 : $P_2f_n(k_2,n_2) - P_2w_2 = 0$ Equation 2

- ☐ Financing constraint does not affect profit-maximizing choices of labor hiring...
- ...thus same analysis from Chapter 6 of labor demand curve, etc, applies
- \Box FOCs with respect to k_2 , a_1
 - ☐ The interesting aspects of the framework
 - ☐ The heart of the financial accelerator framework

April 16, 2012

Model Analysis

FIRM PROFIT MAXIMIZATION

$$\begin{split} P_1 f(k_1, n_1) + P_1 k_1 + (S_1 + D_1) a_0 - P_1 w_1 n_1 - P_1 k_2 - S_1 a_1 + \frac{P_2 f(k_2, n_2)}{1 + i} + \frac{P_2 k_2}{1 + i} + \frac{(S_2 + D_2) a_1}{1 + i} - \frac{P_2 w_2 n_2}{1 + i} \\ + \frac{\lambda}{\lambda} \left[R \cdot S_1 \cdot a_1 - P_1 \cdot (k_2 - k_1) \right] \end{split}$$

□ FOCs with respect to k_2 , a_1

with respect to k_2 :

with respect to a_1 :

FIRM PROFIT MAXIMIZATION

$$\begin{split} &P_{\mathbf{i}}f(k_{\mathbf{i}},n_{\mathbf{i}}) + P_{\mathbf{i}}k_{\mathbf{i}} + (S_{\mathbf{i}} + D_{\mathbf{i}})a_{\mathbf{0}} - P_{\mathbf{i}}w_{\mathbf{i}}n_{\mathbf{i}} - P_{\mathbf{i}}k_{\mathbf{2}} - S_{\mathbf{i}}a_{\mathbf{i}} + \frac{P_{\mathbf{2}}f(k_{\mathbf{2}},n_{\mathbf{2}})}{1+i} + \frac{P_{\mathbf{2}}k_{\mathbf{2}}}{1+i} + \frac{(S_{\mathbf{2}} + D_{\mathbf{2}})a_{\mathbf{i}}}{1+i} - \frac{P_{\mathbf{2}}w_{\mathbf{2}}n_{\mathbf{2}}}{1+i} \\ &\quad + \lambda \left[R \cdot S_{\mathbf{i}} \cdot a_{\mathbf{i}} - P_{\mathbf{i}} \cdot (k_{\mathbf{2}} - k_{\mathbf{i}}) \right] \end{split}$$

 \Box FOCs with respect to k_2 , a_1

with respect to
$$\mathbf{k}_2$$
: $-P_1 + \frac{P_2 f_k(k_2, n_2)}{1+i} + \frac{P_2}{1+i} - \lambda P_1 = 0$ Equation 3 with respect to \mathbf{a}_1 : $-S_1 + \frac{S_2 + D_2}{1+i} + \lambda \cdot R \cdot S_1 = 0$

April 16, 2012 2

Model Analysis

FIRM PROFIT MAXIMIZATION

$$\begin{split} &P_{\mathbf{i}}f(k_{\mathbf{i}},n_{\mathbf{i}}) + P_{\mathbf{i}}k_{\mathbf{i}} + (S_{\mathbf{i}} + D_{\mathbf{i}})a_{\mathbf{0}} - P_{\mathbf{i}}w_{\mathbf{i}}n_{\mathbf{i}} - P_{\mathbf{i}}k_{2} - S_{\mathbf{i}}a_{\mathbf{i}} + \frac{P_{2}f(k_{2},n_{2})}{1+i} + \frac{P_{2}k_{2}}{1+i} + \frac{(S_{2} + D_{2})a_{\mathbf{i}}}{1+i} - \frac{P_{2}w_{2}n_{2}}{1+i} \\ &\quad + \lambda \left[R \cdot S_{\mathbf{i}} \cdot a_{\mathbf{i}} - P_{\mathbf{i}} \cdot (k_{2} - k_{\mathbf{i}}) \right] \end{split}$$

□ FOCs with respect to k_2 , a_1

with respect to
$$k_2$$
: $-P_1 + \frac{P_2 f_k(k_2, n_2)}{1+i} + \frac{P_2}{1+i} - \frac{\lambda}{\lambda} P_1 = 0$ Equation 3 with respect to a_1 : $-S_1 + \frac{S_2 + D_2}{1+i} + \frac{\lambda}{\lambda} \cdot R \cdot S_1 = 0$

- □ Analysis of Equation 4 in isolation
 - □ Answers the central question: under what conditions does $\lambda = 0$?
 - Reveals how stock market returns affect financing constraints
 - $f \square$ Reveals how government regulation affects financing constraints
- □ Analysis of Equation 3 and Equation 4 jointly
 - Demonstrates how/why financial market prices (i.e., stock prices/returns) matter for macroeconomic activity
 - ☐ The financial accelerator effect

WHY IS FINANCING A CONSTRAINT?

$$-S_1 + \frac{S_2 + D_2}{1+i} + \lambda \cdot R \cdot S_1 = 0$$

$$\downarrow \quad \text{Solve for } \lambda$$

$$\lambda = \left[S_1 - \frac{S_2 + D_2}{1+i} \right] \cdot \frac{1}{R \cdot S_1}$$

$$\downarrow \quad \text{Pull } 1/S_1 \text{ term inside}$$

$$\lambda = \left[1 - \frac{S_2 + D_2}{S_1} \cdot \frac{1}{1+i} \right] \cdot \frac{1}{R}$$

$$\downarrow \quad \text{Multiply and divide second term in parentheses by } P_1 \text{ and } P_2$$

$$\lambda = \left[1 - \frac{S_2 + D_2}{S_1} \cdot \frac{P_1}{P_2} \cdot \frac{P_2}{P_1} \cdot \frac{1}{1+i} \right] \cdot \frac{1}{R}$$

$$\downarrow \quad \text{Use definition of inflation, } 1 + n_2 = P_2 / P_1 \text{, and regroup terms}$$

$$\lambda = \left[1 - \frac{S_2 + D_2}{S_1} \cdot \frac{P_1}{P_2} \cdot \frac{1 + \pi_2}{1+i} \right] \cdot \frac{1}{R}$$

April 16, 2012 3

Model Analysis

WHY IS FINANCING A CONSTRAINT?

WHY IS FINANCING A CONSTRAINT?

$$\lambda = \left\lceil \frac{r - r^{STOCK}}{1 + r} \right\rceil \cdot \frac{1}{R}$$
The Lagrange multiplier on firm's financing constraint

- □ Basic firm theory (Chapter 6)
 - No financing constraint
 - \Box Can interpret basic firm theory analysis as featuring $\lambda = 0$
 - ☐ Interpretation: under "normal market conditions," financing constraints don't matter (much...)
 - Identify "normal market conditions" as <u>TYPE OF</u> "steady state"

$$P_{1}f(k_{1},n_{1}) + P_{1}k_{1} + (S_{1} + D_{1})a_{0} - P_{1}w_{1}n_{1} - P_{1}k_{2} - S_{1}a_{1} + \frac{P_{2}f(k_{2},n_{2})}{1+i} + \frac{P_{2}k_{2}}{1+i} + \frac{(S_{2} + D_{2})a_{1}}{1+i} - \frac{P_{2}w_{2}n_{2}}{1+i} + \frac{(S_{1} + D_{1})a_{1} - P_{2}w_{2}n_{2}}{1+i} + \frac{(S_{1} + D_{1})a_{1} - P_{1}w_{2}n_{2}}{1+i} + \frac{(S_{1} + D_{1})a_{1} - P_{2}w_{2}n_{2}}{1+i} + \frac{(S_{1} + D_{1})a_{1$$

April 16, 2012 3

Model Analysis

WHY IS FINANCING A CONSTRAINT?

$$\lambda = \left[\frac{r - r^{STOCK}}{1 + r} \right] \cdot \frac{1}{R}$$
 The Lagrange multiplier on firm's financing constraint

- □ Basic firm theory (Chapter 6)
 - \square No financing constraint
 - Can interpret basic firm theory analysis as featuring $\lambda = 0$
 - Interpretation: under "normal market conditions," financing constraints don't matter (much...)
 - ☐ Identify "normal market conditions" as <u>TYPE OF</u> "steady state"

$$P_{1}f(k_{1},n_{1}) + P_{1}k_{1} + (S_{1} + D_{1})a_{0} - P_{1}w_{1}n_{1} - P_{1}k_{2} - S_{1}a_{1} + \frac{P_{2}f(k_{2},n_{2})}{1+i} + \frac{P_{2}k_{2}}{1+i} + \frac{(S_{2} + D_{2})a_{1}}{1+i} - \frac{P_{2}w_{2}n_{2}}{1+i} + \frac{(S_{1} + D_{1})a_{1} - P_{2}w_{2}n_{2}}{1+i} + \frac{(S_{1} + D_{1})a_{1} - P_{1}w_{2}n_{2}}{1+i} + \frac{(S_{1} + D_{1})a_{1} - P_{1}w_{2}n_{2}}{1+i} + \frac{(S_{1} + D_{1})a_{1} - P_{2}w_{2}n_{2}}{1+i} + \frac{(S_{1} + D_{1})a_{1$$

- If $\lambda = 0$ (i.e., "normal market conditions," aka "steady state")
 - $f \square$ Labor demand decisions unaffected by financial market conditions
 - □ Capital demand decisions unaffected by financial market conditions
- □ Key question: what causes $\lambda = 0$?

Finance Fundamentals

WHY IS FINANCING A CONSTRAINT?

$$\lambda = \left[\frac{r - r^{STOCK}}{1 + r}\right] \cdot \frac{1}{R}$$
 The Lagrange multiplier on firm's financing constraint

- Two conditions for $\lambda = 0$
 - Market returns on risky assets equal returns on riskless assets
 - □ Risky assets: stocks
 - □ Riskless assets
 - ☐ Bonds (financial)

April 16, 2012

Finance Fundamentals

WHY IS FINANCING A CONSTRAINT?

$$\lambda = \left[\frac{r - r^{STOCK}}{1 + r}\right] \cdot \frac{1}{R}$$
 The Lagrange multiplier on firm's financing constraint

- Two conditions for $\lambda = 0$
- Market returns on risky assets equal returns on riskless assets Can think of both government bonds (financial assets) and machines &
 - ☐ Risky assets: stocks
 - Riskless assets Bonds (financial)
 - ☐ Machines and equipment (physical) most directly relevant for firms' production and sales activity
 - □ Basic firm theory prediction: r = mpk

 $r=r^{STOCK}$ \longrightarrow $\lambda=0$ Interpretation: if returns on financial assets are aligned with returns on physical assets, financing constraints "don't matter"

April 16, 2012

and machines & equipment (physical assets) as "riskless": you (pretty much...) know what you're going to get from them.

36

Finance Fundamentals

WHY IS FINANCING A CONSTRAINT?

$$\lambda = \left\lceil \frac{r - r^{STOCK}}{1 + r} \right\rceil \cdot \frac{1}{R}$$
The Lagrange multiplier on firm's financing constraint

Two conditions for $\lambda = 0$

Can think of both government bonds (financial assets) and machines & and machines & equipment (physical assets) as "riskless": you (pretty much...) know what you're going to get from them. Market returns on risky assets equal returns on riskless assets

- Risky assets: stocks
 - Riskless assets □ Bonds (financial)
 - Machines and equipment (physical) most directly relevant for firms' production and sales activity
 - □ Basic firm theory prediction: r = mpk

$$r=r^{STOCK}$$
 \longrightarrow $\lambda=0$ Interpretation: if returns on financial assets are aligned with returns on physical assets, financing constraints "don't matter"

- Government oversight of borrowing/lending relationships very lax
 - The larger is R, the lower is λ
 - Financing constraint: $P_1 \cdot (k_2 k_1) = R(S_1 \cdot a_1)$ Holding constant market value of financial assets, higher R allows higher k_2

April 16, 2012 37

Finance Fundamentals

WHY IS FINANCING A CONSTRAINT?

$$\lambda = \left\lceil \frac{r - r^{STOCK}}{1 + r} \right\rceil \cdot \frac{1}{R}$$
The Lagrange multiplier on firm's financing constraint

- Two conditions for $\lambda = 0$
 - Market returns on risky assets equal returns on riskless assets
- Can think of both government bonds (financial assets) and machines &
- and machines & equipment (physical assets) as "riskless": you (pretty much...) know what you're going to get from them.
- Risky assets: stocks
 - Riskless assets
 - Bonds (financial)
 - Machines and equipment (physical) most directly relevant for firms' production and sales activity
 - □ Basic firm theory prediction: r = mpk

 $r=r^{STOCK}$ \longrightarrow $\lambda=0$ Interpretation: if returns on financial assets are aligned with returns on physical assets, financing constraints "don't matter"

- Government oversight of borrowing/lending relationships very lax
 - The larger is R, the lower is λ
 - Market value of financial assets Financing constraint: $P_1 \cdot (k_2 - k_1) = R(S_1 \cdot a_1)$ Holding constant market value of financial assets, higher R allows higher k_2
 - In practice, not literally infinity... $\lambda = 0$

Interpretation: if government regulations allow high borrowing with little assets, financing constraints "don't matter"

April 16, 2012 38

Capital Demand in the Micro

FINANCING CONSTRAINT AND CAPITAL DEMAND

- Suppose R = 1 in "steady state" (but keep R in rest of analysis)
 - R > 1 is "lax regulation" (because it lowers λ , all else constant)
 - R < 1 is "tight regulation" (because it increases λ , all else constant)
 - \Rightarrow Whether or not financing constraint matters (i.e., whether or not λ = 0) all depends on whether or not $r^{STOCK} = r$ or not

KEY IDEA: if returns on riskless assets = returns on risky assets > financing constraints "don't matter" for firm production decisions

April 16, 2012

Capital Demand in the Micro

FINANCING CONSTRAINT AND CAPITAL DEMAND

- Suppose R = 1 in "steady state" (but keep R in rest of analysis)
 - R > 1 is "lax regulation" (because it lowers λ , all else constant)
 - R < 1 is "tight regulation" (because it increases λ , all else constant)
 - \rightarrow Whether or not financing constraint matters (i.e., whether or not λ = 0) all depends on whether or not $\frac{r^{STOCK}}{r} = r$ or not

KEY IDEA: if returns on riskless assets = returns on risky assets → financing constraints "don't matter" for firm production decisions

 $-P_{1} + \frac{P_{2}f_{k}(k_{2}, n_{2})}{1+i} + \frac{P_{2}}{1+i} - \frac{\lambda}{\lambda}P_{1} = 0$ Equation 3 (FOC on k_{2})

 $\lambda = \left\lceil \frac{r - r^{STOCK}}{1 + r} \right\rceil \cdot \frac{1}{R}$ **Equation 4** (FOC on a_1)

- Basic firm theory (Chapter 6)
 - Capital demand function derived from Equation 3
 - Idea same as in Chapter 6...but now complicated by the financing constraint

 $-P_1 + \frac{P_2 f_k(k_2, n_2)}{1+i} + \frac{P_2}{1+i} - \left[\frac{r - r^{STOCK}}{1+r} \right] \frac{1}{R} P_1 = 0$

April 16, 2012

40

FINANCING CONSTRAINT AND CAPITAL DEMAND

$$\begin{split} -P_1 + \frac{P_2 f_k(k_2, n_2)}{1+i} + \frac{P_2}{1+i} - \left[\frac{r - r^{STOCK}}{1+r} \right] \frac{1}{R} P_1 &= 0 \quad \text{(from previous page)} \\ & \downarrow \quad \text{Divide by } P_1 \\ & \frac{P_2 f_k(k_2, n_2)}{P_1(1+i)} + \frac{P_2}{P_1(1+i)} - \left[\frac{r - r^{STOCK}}{1+r} \right] \frac{1}{R} = 1 \\ & \downarrow \quad \text{Use definition of inflation, } 1 + n_2 &= P_2 / P_1 \\ & \left(\frac{1+\pi_2}{1+i} \right) f_k(k_2, n_2) + \frac{1+\pi_2}{1+i} - \left[\frac{r - r^{STOCK}}{1+r} \right] \frac{1}{R} = 1 \\ & \downarrow \quad \text{Apply Fisher relation for "riskless" assets} \\ & \frac{f_k(k_2, n_2)}{1+r} + \frac{1}{1+r} - \left[\frac{r - r^{STOCK}}{1+r} \right] \frac{1}{R} = 1 \end{split}$$

April 16, 2012 4

Capital Demand in the Micro

FINANCING CONSTRAINT AND CAPITAL DEMAND

$$-P_1 + \frac{P_2 f_k(k_2, n_2)}{1+i} + \frac{P_2}{1+i} - \left[\frac{r-r^{STOCK}}{1+r}\right] \frac{1}{R} P_1 = 0 \quad \text{(from previous page)}$$

$$\frac{P_2 f_k(k_2, n_2)}{P_1(1+i)} + \frac{P_2}{P_1(1+i)} - \left[\frac{r-r^{STOCK}}{1+r}\right] \frac{1}{R} = 1$$

$$\downarrow \quad \text{Use definition of inflation, } 1 + n_2 = P_2 / P_1$$

$$\left(\frac{1+\pi_2}{1+i}\right) f_k(k_2, n_2) + \frac{1+\pi_2}{1+i} - \left[\frac{r-r^{STOCK}}{1+r}\right] \frac{1}{R} = 1$$

$$\downarrow \quad \text{Apply Fisher relation for "riskless" assets}$$

$$\frac{f_k(k_2, n_2)}{1+r} + \frac{1}{1+r} - \left[\frac{r-r^{STOCK}}{1+r}\right] \frac{1}{R} = 1$$

$$\downarrow \quad \text{Multiply by (1+r)}$$

$$\frac{f_k(k_2, n_2) + 1 - r^{STOCK}}{R} = 1 + r$$

$$\frac{f_k(k_2, n_2) + 1 - r^{STOCK}}{R} = 1 + r$$

$$\frac{f_k(k_2, n_2) + 1 - r^{STOCK}}{R} = 1 + r$$

$$\frac{f_k(k_2, n_2) + 1 - r^{STOCK}}{R} = 1 + r$$

$$\frac{f_k(k_2, n_2) + 1 - r^{STOCK}}{R} = 1 + r$$

$$\frac{f_k(k_2, n_2) + 1 - r^{STOCK}}{R} = 1 + r$$

$$\frac{f_k(k_2, n_2) + 1 - r^{STOCK}}{R} = 1 + r$$

$$\frac{f_k(k_2, n_2) + 1 - r^{STOCK}}{R} = 1 + r$$

$$\frac{f_k(k_2, n_2) + 1 - r^{STOCK}}{R} = 1 + r$$

$$\frac{f_k(k_2, n_2) + 1 - r^{STOCK}}{R} = 1 + r$$

Macro Fundamentals

COBB-DOUGLAS PRODUCTION FUNCTION

Commonly-used functional form in quantitative macroeconomic analysis

$$f(k,n) = k^{\alpha} n^{1-\alpha}$$

- Describes the empirical relationship between aggregate GDP, aggregate capital, and aggregate labor quite well
- $\alpha \in (0,1)$ measures capital's share of output
 - □ Hence $(1-\alpha)$ ∈ (0,1) measures labor's share of output
 - □ Interpretation
 - The relative importance of (either) capital (or labor) in the production process
 - Estimates for U.S. economy: $\alpha \approx 0.3$
 - \square Estimates for Chinese economy: $\alpha \approx 0.15$ (not (yet) a very capital-rich economy)
- Cobb-Douglas form useful for illustrating factor demands
 - $\square \qquad mpn = f_n(k,n) = (1-\alpha)k^{\alpha}n^{-\alpha}$
 - $mpk = f_{\iota}(k,n) = \alpha k^{\alpha-1} n^{1-\alpha}$

April 16, 2012 43

Capital Demand in the Micro

FINANCING CONSTRAINT AND CAPITAL DEMAND

☐ Firm-level demand for capital defined by the relation

$$r = \alpha k^{\alpha - 1} n^{1 - \alpha} - \left[\frac{r - r^{STOCK}}{R} \right] \left(= mpk - \left[\frac{r - r^{STOCK}}{R} \right] \right)$$

$$r = \alpha k^{\alpha - 1} n^{1 - \alpha} - \frac{r}{R} + \frac{r^{STOCK}}{R}$$

$$\left[1 + \frac{1}{R} \right] r = \alpha k^{\alpha - 1} n^{1 - \alpha} + \frac{r^{STOCK}}{R}$$

$$\left[\frac{R + 1}{R} \right] r = \alpha k^{\alpha - 1} n^{1 - \alpha} + \frac{r^{STOCK}}{R}$$

$$r = \left(\frac{R}{R + 1} \right) \alpha k^{\alpha - 1} n^{1 - \alpha} + \frac{r^{STOCK}}{R + 1}$$

$$r = \left(\frac{R}{R + 1} \right) \alpha k^{\alpha - 1} n^{1 - \alpha} + \frac{r^{STOCK}}{R + 1}$$

Capital Demand in the Micro

FINANCING CONSTRAINT AND CAPITAL DEMAND

Firm-level demand for capital defined by the relation

$$r = \left(\frac{R}{R+1}\right) \alpha k^{\alpha - 1} n^{1 - \alpha} + \frac{r^{STOCK}}{R+1}$$

Because exponent (a - 1) is a negative number, can move to denominator

capital demand function

April 16, 2012

Capital Demand in the Micro

FINANCING CONSTRAINT AND CAPITAL DEMAND

Firm-level demand for capital defined by the relation

$$r = \left(\frac{R}{R+1}\right) \alpha k^{\alpha-1} n^{1-\alpha} + \frac{r^{STOCK}}{R+1}$$

April 16, 2012

46

Model Structure

FINANCIAL ACCELERATOR FRAMEWORK

☐ Four Building Blocks of the Financial Accelerator Framework

2. Financing Constraint

$$P_1 \cdot (k_2 - k_1) = S_1 \cdot a_1$$

 Government Regulation of Financial Relationships (imposition of R on financing constraint)

$$P_1 \cdot (k_2 - k_1) = \mathbf{R} \cdot S_1 \cdot a_1$$

4. Relationship between firm profits and dividends

NOW

April 16, 2012 49

Macro Fundamentals

DIVIDENDS AND PROFITS

- Dividend: payment made by a corporation to its shareholders; the portion of corporate profits paid out to stockholders (Wikipedia definition)
- □ Corporate dividend policies differ widely across industries and companies
 - ☐ Some companies retain most of their profits (to re-invest in ongoing projects)
 - □ Some industries' dividend policies subject to government regulation
 - Recently: financial companies receiving government support had dividend payments limited to \$0.01 per share
- □ Recent average: ≈35 percent of profits disbursed as dividends
 - Based on recent data collected by U.S. Bureau of Economic Analysis for corporations listed on S&P 500

DIVIDENDS AND PROFITS

- □ Dividend: payment made by a corporation to its shareholders; the portion of corporate profits paid out to stockholders (Wikipedia definition)
- Corporate dividend policies differ widely across industries and companies
 - ☐ Some companies retain most of their profits (to re-invest in ongoing projects)
 - ☐ Some industries' dividend policies subject to government regulation
 - Recently: financial companies receiving government support had dividend payments limited to \$0.01 per share
- □ Recent average: ≈35 percent of profits disbursed as dividends
 - Based on recent data collected by U.S. Bureau of Economic Analysis for corporations listed on S&P 500
- ☐ Simplifying assumption for our analytical framework
 - ☐ All (100 percent) firm profits distributed as dividends
 - □ In period t_t , D_t = nominal profits,
- Building Block 4: Relationship between firm profits and dividends

$$D_t = P_t \cdot \underbrace{profit_t}_{} \qquad \qquad \text{REAL profits of firm in period } t$$

April 16, 2012

51

Model Structure

FINANCIAL ACCELERATOR FRAMEWORK

- ☐ Four Building Blocks of the Financial Accelerator Framework
 - 1. Firm Profit Function

$$P_{1}f(k_{1},n_{1}) + P_{1}k_{1} + (S_{1} + D_{1})a_{0} - P_{1}w_{1}n_{1} - P_{1}k_{2} - S_{1}a_{1} + \frac{P_{2}f(k_{2},n_{2})}{1+i} + \frac{P_{2}k_{2}}{1+i} + \frac{(S_{2} + D_{2})a_{1}}{1+i} - \frac{P_{2}w_{2}n_{2}}{1+i} - \frac{P_{2}k_{3}}{1+i} - \frac{S_{2}a_{3}}{1+i}$$

2. Financing Constraint

$$P_1 \cdot (k_2 - k_1) = S_1 \cdot a_1$$

 Government Regulation of Financial Relationships (imposition of R on financing constraint)

$$P_1 \cdot (k_2 - k_1) = \mathbf{R} \cdot S_1 \cdot a_1$$

4. Relationship between firm profits and dividends

$$D_t = P_t \cdot \underbrace{profit}_t \qquad \qquad \text{REAL profits of firm in period } t$$

FINANCIAL ACCELERATOR IN ACTION

Suppose economy is in a "steady-state" in which $r = r^{STOCK}$...
...then a shock causes r^{STOCK} to decline

i.e., broad range of financial asset returns suddenly fall...
...perhaps because of problems stemming from one or a few classes of financial assets (i.e., mortgage-backed bonds)

Total Investment demand function

Aggregate capital markets

April 16, 2012

FINANCIAL ACCELERATOR IN ACTION Suppose economy is in a "steady-state" in which r = r^{STOCK}... ...then a shock causes r^{STOCK} to decline ...e., broad range of financial asset returns suddenly fall... ...perhaps because of problems stemming from one or a few classes of financial assets (i.e., mortgage-backed bonds) r national savings function Firms' profit-maximizing quantity of (physical) investment inv Aggregate capital markets Equilibrium quantity of (physical) investment falls Investment ≈ 15% of GDP

Government's Role in Finance

POLICY AND REGULATORY RESPONSES

Entire accelerator mechanism due to financing constraint

$$P_1 \cdot (k_2 - k_1) = \mathbf{R} \cdot S_1 \cdot a_1$$

 $f \square$ Lagrange multiplier related to asset returns and government regulation by

$$\lambda = \left[\frac{r - r^{STOCK}}{1 + r} \right] \cdot \frac{1}{R}$$

□ If r^{STOCK} falls below r (which causes accelerator mechanism to begin)

- □ *λ* increases
- $\ \square$ Optimal regulatory response: raise R, which would cause λ to decline!
- ☐ If designed properly, a rise in R can perfectly offset the fall in r^{STOCK}, thus choking off the damaging effects of the accelerator

Government's Role in Finance

POLICY AND REGULATORY RESPONSES

■ Entire accelerator mechanism due to financing constraint

$$P_1 \cdot (k_2 - k_1) = \mathbf{R} \cdot S_1 \cdot a_1$$

□ Lagrange multiplier related to asset returns and government regulation by

$$\lambda = \left\lceil \frac{r - r^{STOCK}}{1 + r} \right\rceil \cdot \frac{1}{R}$$

□ If r^{STOCK} falls below r (which causes accelerator mechanism to begin)

□ A increases

Optimal regulatory response: raise R, which would cause λ to decline!

If designed properly, a rise in R can perfectly offset the fall in r^{STOCK}, thus choking off the damaging effects of the accelerator

 \Box Interpretation of rise in R

For a given market value of financial assets, S_1a_1 , a higher R allows firms to borrow more from private lenders, in turn allowing them to purchase more (physical) capital

One interpretation: government "guarantees" private loans

Allows firms to produce more for the same level of financial resources

April 16, 2012

Government's Role in Finance

POLICY AND REGULATORY RESPONSES

☐ Entire accelerator mechanism due to financing constraint

$$P_1 \cdot (k_2 - k_1) = \mathbf{R} \cdot S_1 \cdot a_1$$

 \Box Interpretation of rise in R

For a given market value of financial assets, S_1a_1 , a higher R allows firms to borrow more in order to purchase more (physical) capital

□ Allows firms to produce more for the same exact financial resources

 \Box Changes in R can be time-consuming to implement

□ Simultaneously controlled by Federal Reserve, Treasury, Securities and Exchange Commission (SEC), Comptroller of the Currency, and several other regulatory agencies – huge coordination delays!

Another "policy action" that has the same effect as raising R

 \square Design policies to raise financial asset prices (i.e., S_1) directly!

Government's Role in Finance

POLICY AND REGULATORY RESPONSES

Entire accelerator mechanism due to financing constraint

$$P_1 \cdot (k_2 - k_1) = \mathbf{R} \cdot S_1 \cdot a_1$$

- \Box Interpretation of rise in R
 - For a given market value of financial assets, S_1a_1 , a higher R allows firms to borrow more in order to purchase more (physical) capital
 - □ Allows firms to produce more for the same exact financial resources
- \Box Changes in R can be time-consuming to implement
 - □ Simultaneously controlled by Federal Reserve, Treasury, Securities and Exchange Commission (SEC), Comptroller of the Currency, and several other regulatory agencies – huge coordination delays!
- Another "policy action" that has the same effect as raising R
 - Design policies to raise financial asset prices (i.e., S_1) directly!
 - Exactly the intention of U.S. Troubled Asset Relief Program (TARP)
 - ☐ Direct purchases by Treasury of a wide variety of financial assets
 - ☐ The increased demand for these assets would lift their price
 - Exactly the intention of Federal Reserve's programs to buy a wide variety of financial assets increased demand would lift prices

April 16, 2012 69

Macro Fundamentals

REAL INTEREST RATE

r a key variable for macroeconomic analysis

Macro Fundamentals

REAL INTEREST RATE

 $r \ \underline{the}$ key variable for macroeconomic analysis

April 16, 2012

Macro Fundamentals

REAL INTEREST RATE

- r the key variable for macroeconomic analysis
- Chapter 4: r measures the price of period-1 consumption in terms of period-2 consumption
- Chapter 8: r reflects degree of impatience
- \emph{r} often reflects rate of consumption growth between periods
- Chapter 6: r measures the price/return of physical assets (i.e., machines and equipment) of firms

 "Riskless" assets

April 16, 2012

72

Macro-Finance Fundamentals

REAL INTEREST RATE

- □ r the key variable for macroeconomic analysis
- □ Chapter 4: r measures the price of period-1 consumption in terms of period-2 consumption
- □ Chapter 8: *r* reflects degree of impatience
- \Box r often reflects rate of consumption growth between periods
- □ Chapter 6: *r* measures the price/return of physical assets (i.e., machines and equipment) of firms
 - ☐ "Riskless" assets
- Now: r <u>also</u> measures price/return of risky assets (i.e., stock) in "steady state"
 - ☐ If $r = r^{STOCK}$, financing issues don't affect (very much) macroeconomic outcomes
 - ☐ If r and r^{STOCK} deviate significantly
 - ☐ Financial conditions of firms matter for investment/output
 - And can matter very importantly!

April 16, 2012

Macro-Finance Fundamentals

REAL INTEREST RATE

- □ r the key variable for macroeconomic analysis
- □ Chapter 4: r measures the price of period-1 consumption in terms of period-2 consumption
- \Box Chapter 8: r reflects degree of impatience
- Chapter 6: r measures the price/return of physical assets (i.e., machines and equipment) of firms
 - □ "Riskless" assets
- Now: r also measures price/return of risky assets (i.e., stock) in "steady state"
- \Box Can also think of $\underline{\lambda}$ itself as a type of real interest rate an interest <u>SPREAD</u>
 - ☐ The price of bringing funds from "outside sources" (i.e., lenders) "inside" the firm (i.e., the borrower) to finance operations

Macro-Finance Fundamentals

REAL INTEREST RATE

- r the key variable for macroeconomic analysis
- □ Chapter 4: r measures the price of period-1 consumption in terms of period-2 consumption
- □ Chapter 8: *r* reflects degree of impatience
- \Box r often reflects rate of consumption growth between periods
- □ Chapter 6: r measures the price/return of physical assets (i.e., machines and equipment) of firms
 - □ "Riskless" assets
- □ Now: *r* <u>also</u> measures price/return of risky assets (i.e., stock) in "steady
- Can also think of <u>λ itself</u> as a type of real interest rate an interest <u>SPREAD</u>
 - The price of bringing funds from "outside sources" (i.e., lenders) "inside" the firm (i.e., the borrower) to finance operations
 - If $r = r^{STOCK}$, this price equals zero
 - ☐ Cost of "external funding sources" vs. "internal funding sources" due to info. asymmetry

April 16, 2012 75

Macro-Finance Fundamentals

REAL INTEREST RATE

- r <u>the</u> key variable for macroeconomic analysis
- Chapter 4: r measures the price of period-1 consumption in terms of period-2 consumption
- \Box Chapter 8: r reflects degree of impatience
- Chapter 6: r measures the price/return of physical assets (i.e., machines and equipment) of firms
 - "Riskless" assets
- Now: r <u>also</u> measures price/return of risky assets (i.e., stock) in "steady state"
- □ Can also think of <u>\(\lambda\) itself</u> as a type of real interest rate an interest <u>SPREAD</u>
 □ The price of bringing funds from "outside sources" (i.e., lenders) "inside" the firm
 - (i.e., the borrower) to finance operations

 If $r = r^{STOCK}$, this price equals zero
 - ☐ Cost of "external funding sources" vs. "internal funding sources" due to info. asymmetry
- Other ways of understanding r....will study in more advanced courses in macroeconomics and finance