









| Consumer A: Consumed \$50 in Year X No other consumers in the economy |
|-----------------------------------------------------------------------|
| Consumer B: Consumed \$75 in Year X                                   |
| Consumer C: Consumed \$100 in Year X                                  |
| Consumer D: Consumed \$125 in Year X                                  |
| Consumer E: Consumed \$150 in Year X                                  |
| Aggregate (i.e., economy-wide) consumption = \$500                    |
| Average consumption = \$100                                           |
| Macroeconomics often most concerned with aggregate outcomes           |
|                                                                       |
|                                                                       |
|                                                                       |







| Uτ | ILITY FUNCTIONS                                                                                                                                                      |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Describe how much "happiness" or "satisfaction" an individual experiences from "consuming" goods – the benefit of consumption                                        |
|    | Marginal Utility                                                                                                                                                     |
|    | The extra total utility resulting from consumption of a small/incremental extra unit of a good                                                                       |
|    | Mathematically, the (partial) slope of utility with respect to that good<br><u>Alternative notation</u> : du/dc OR u'(c) OR u <sub>c</sub> (c) OR u <sub>1</sub> (c) |
|    | One-good case: $u(c)$ , with $du/dc > 0$ and $d^2u/dc^2 < 0$                                                                                                         |
|    | <ul> <li>Recall interpretation: strictly increasing at a strictly decreasing rate</li> <li>Diminishing marginal utility</li> </ul>                                   |
|    | Two-good case: $u(c_1, c_2)$ , with $u_i(c_1, c_2) > 0$ and $u_{ii}(c_1, c_2) < 0$ for each of $i = 1, 2$                                                            |
|    | Utility strictly increasing in each good individually (partial)                                                                                                      |
|    | Diminishing marginal utility in each good individually                                                                                                               |
|    | Easily extends to <b>N</b> -good case: $u(c_1, c_2, c_3, c_4, \dots, c_N)$                                                                                           |























|  | <ul> <li>Consumer optimization a constrained optimization problem</li> <li>Maximize some function (utility function)</li> <li>taking into account some restriction on the objects to be maximized over (budget constraint)</li> </ul>                                                        |
|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|  | Lagrange Method: mathematical tool to solve constrained optimization problems                                                                                                                                                                                                                |
|  | General mathematical formulation<br>Choose (x, y) to maximize a given objective function $f(x,y)$<br>subject to the constraint $g(x,y) = 0$ (Note formulation of constraint)<br>Step 1: Construct Lagrange function<br>Lagrange multiplier<br>$L(x, y, \lambda) = f(x, y) + \lambda g(x, y)$ |
|  | Step 2: Compute first-order conditions with respect to $x$ , $y$ , and $\lambda$                                                                                                                                                                                                             |







|    | The Mathematics of Consumer Theorem                                                     |
|----|-----------------------------------------------------------------------------------------|
| LA | GRANGE ANALYSIS                                                                         |
|    | Apply Lagrange tools to consumer optimization                                           |
|    | Objective function: $u(c_1, c_2)$                                                       |
|    | Constraint: $g(c_1, c_2) = Y - P_1 c_1 - P_2 c_2 = 0$                                   |
|    | Step 1: Construct Lagrange function                                                     |
|    | $L(c_{1}, c_{2}, \lambda) = u(c_{1}, c_{2}) + \lambda [Y - P_{1}c_{1} - P_{2}c_{2}]$    |
|    | <b>Step 2:</b> Compute first-order conditions with respect to $c_1$ , $c_2$ , $\lambda$ |
|    | Stop 2: Solve (with focus on eliminating multiplier)                                    |
|    | Step 3: Solve (with locus on eliminating multiplier)<br>$u(c^*, c^*) = P$               |
|    | $\frac{u_1(c_1,c_2)}{u_2(c_1^*,c_2^*)} = \frac{u_1}{P_2}$ Optimality condition          |
|    | i.e., MRS = price ratio                                                                 |
|    | Norr 22, 2012 26                                                                        |

