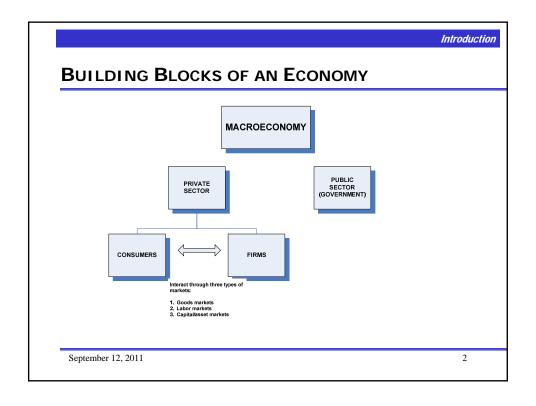
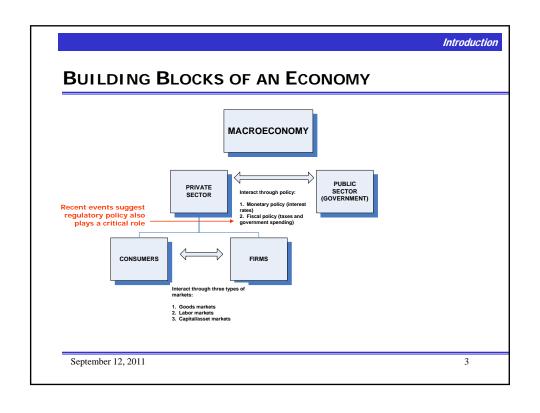
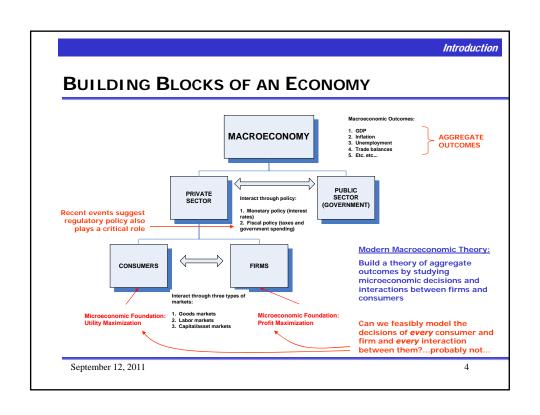
MACROECONOMIC THEORY AND POLICY: OVERVIEW

SEPTEMBER 12, 2011







RE	PRESENTATIVE-AGENT MACROECONOMICS
	Consumer A: Consumed \$50 in Year X No other consumers in the econo
	Consumer B: Consumed \$75 in Year X
	Consumer C: Consumed \$100 in Year X THE REPRESENTATIVE CONSU
	Consumer D: Consumed \$125 in Year X
	Consumer E: Consumed \$150 in Year X
	Aggregate (i.e., economy-wide) consumption = \$500
	Average consumption = \$100
	Macroeconomics often most concerned with aggregate outcome
	If we want to take a micro-based approach to explaining aggregate outcomes
	model Consumer C's behavior/decision-making
	A simplistic approach – turns out to yield surprisingly rich resultinsights, and predictions

REVIEW OF CONSUMER THEORY

SEPTEMBER 12, 2011

Review of Consumer Theory

UTILITY FUNCTIONS

- Describe how much "happiness" or "satisfaction" an individual experiences from "consuming" goods – the benefit of consumption
- Marginal Utility
 - The extra total utility resulting from consumption of a small/incremental extra unit of a good
 - Mathematically, the (partial) slope of utility with respect to that good

September 12, 2011

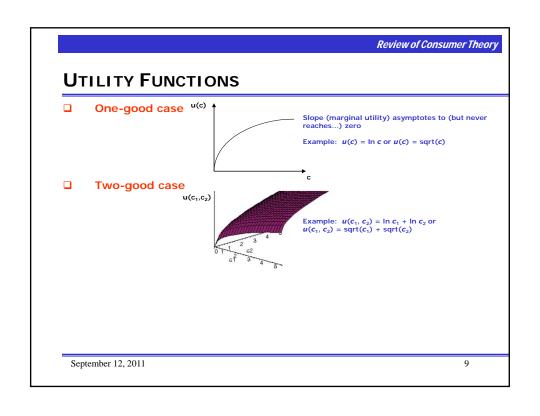
7

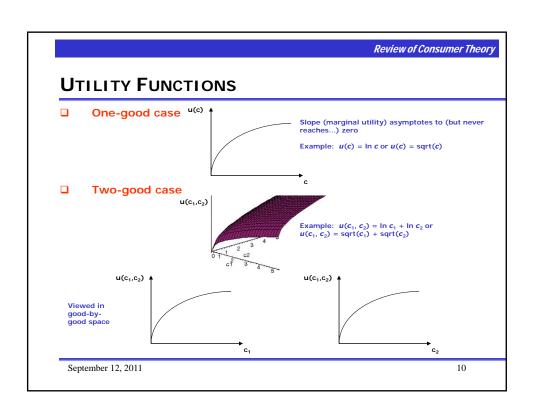
Review of Consumer Theory

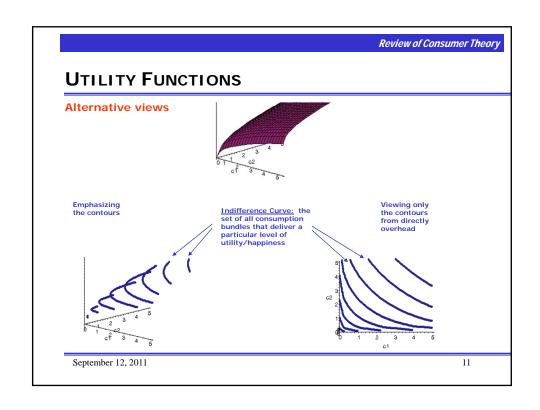
UTILITY FUNCTIONS

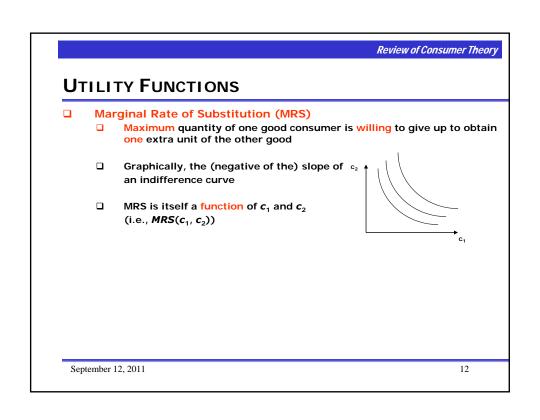
- Describe how much "happiness" or "satisfaction" an individual experiences from "consuming" goods – the benefit of consumption
- Marginal Utility
 - ☐ The extra total utility resulting from consumption of a small/incremental extra unit of a good
 - ☐ Mathematically, the (partial) slope of utility with respect to that good Alternative notation: du/dc OR u'(c) OR $u_c(c)$ OR $u_1(c)$
- One-good case: u(c), with du/dc > 0 and $d^2u/dc^2 < 0$
 - □ Recall interpretation: strictly increasing at a strictly decreasing rate
 - Diminishing marginal utility
- Two-good case: $u(c_1, c_2)$, with $u_i(c_1, c_2) > 0$ and $u_{ii}(c_1, c_2) < 0$ for each of i = 1,2
 - Utility strictly increasing in each good individually (partial)
 - Diminishing marginal utility in each good individually
- Easily extends to **N**-good case: $u(c_1, c_2, c_3, c_4, ..., c_N)$

September 12, 2011





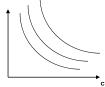




Review of Consumer Theory

UTILITY FUNCTIONS

- Marginal Rate of Substitution (MRS)
 - Maximum quantity of one good consumer is willing to give up to obtain one extra unit of the other good
 - ☐ Graphically, the (negative of the) slope of c₂ an indifference curve



- ☐ MRS is itself a function of c_1 and c_2 (i.e., $MRS(c_1, c_2)$)
- MRS equals ratio of marginal utilities

$$\square \qquad MRS(c_1, c_2) = \frac{u_1(c_1, c_2)}{u_2(c_1, c_2)}$$

- ☐ Using Implicit Function Theorem (see Problem Set 1)
- Summary: whether graphically- or mathematically-formulated, utility functions describe the benefit side of consumer optimization

September 12, 2011

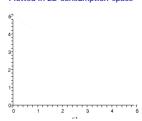
13

The Graphics of Consumer Theory

BUDGET CONSTRAINTS

- Describe the cost side of consumption
- \Box One-good case (trivial): Pc = Y
 - ☐ Assume income **Y** is taken as given by consumer for now
- □ Two-good case (interesting): $P_1c_1 + P_2c_2 = Y$
 - ☐ Assume income Y is taken as given by consumer for now

Plotted in 2D-consumption-space



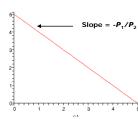
September 12, 2011

BUDGET CONSTRAINTS

- Describe the cost side of consumption
- \Box One-good case (trivial): Pc = Y
 - Assume income Y is taken as given by consumer for now
- □ Two-good case (interesting): $P_1c_1 + P_2c_2 = Y$
 - ☐ Assume income **Y** is taken as given by consumer for now

Plotted in 2D-consumption-space

The Graphics of Consumer Theory



September 12, 2011

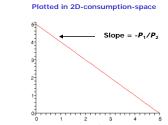
15

The Graphics of Consumer Theory

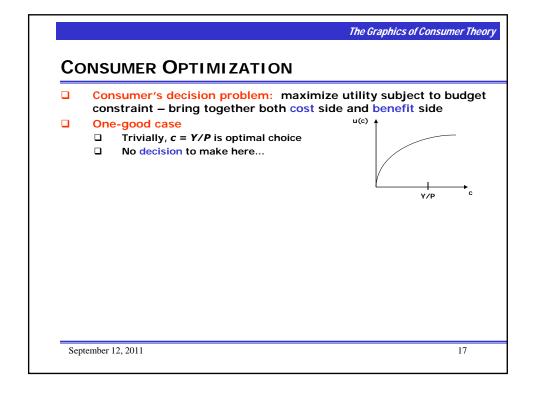
BUDGET CONSTRAINTS

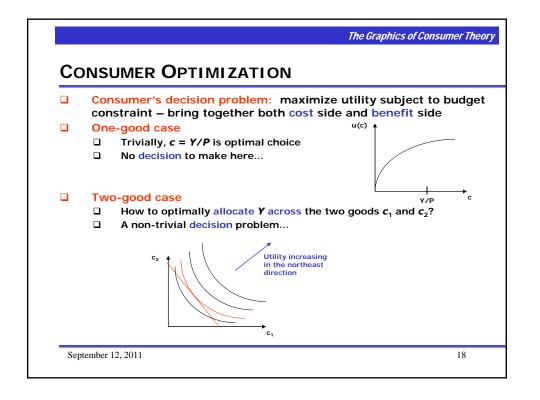
- ☐ Describe the cost side of consumption
- □ One-good case (trivial): Pc = Y
 - $\hfill \Box$ Assume income ${\bf Y}$ is taken as given by consumer for now
- Two-good case (interesting): $P_1c_1 + P_2c_2 = Y$
 - ☐ Assume income Y is taken as given by consumer for now

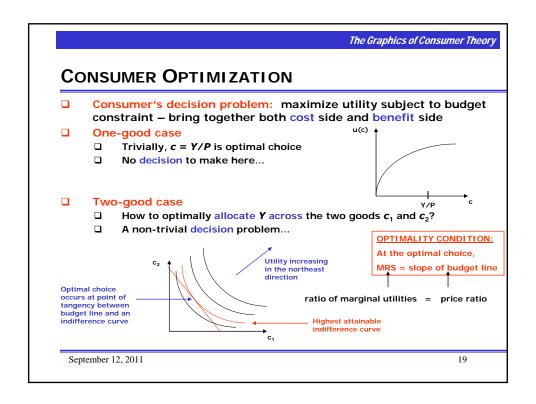
Plotted in 3D-consumption-space



September 12, 2011







The Mathematics of Consumer Theory

LAGRANGE ANALYSIS

- □ Consumer optimization a constrained optimization problem
 - ☐ Maximize some function (utility function)...
 - ...taking into account some restriction on the objects to be maximized over (budget constraint)
- Lagrange Method: mathematical tool to solve constrained optimization problems
- □ General mathematical formulation
 - \Box Choose (x, y) to maximize a given objective function f(x,y)...
 - \square ... subject to the constraint g(x,y) = 0 (Note formulation of constraint)

September 12, 2011

The Mathematics of Consumer Theory

LAGRANGE ANALYSIS

- □ Consumer optimization a constrained optimization problem
 - ☐ Maximize some function (utility function)...
 - ...taking into account some restriction on the objects to be maximized over (budget constraint)
- Lagrange Method: mathematical tool to solve constrained optimization problems
- □ General mathematical formulation
 - \Box Choose (x, y) to maximize a given objective function f(x,y)...
 - \square ...subject to the constraint g(x,y) = 0 (Note formulation of constraint)
 - □ Step 1: Construct Lagrange function ____ Lagrange multiplier

$$L(x, y, \lambda) = f(x, y) + \lambda g(x, y)$$

- Step 2: Compute first-order conditions with respect to x, y, and λ
 - 1) $f_{x}(x, y) + \lambda g_{x}(x, y) = 0$
 - 2) $f_{y}(x, y) + \lambda g_{y}(x, y) = 0$
- <u>Rationale:</u> setting first derivatives to zero isolates maxima (or minima...technically, need to check second-order condition...)
- 3) g(x, y) = 0

September 12, 2011

21

The Mathematics of Consumer Theory

LAGRANGE ANALYSIS

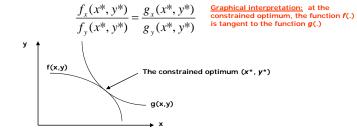
- Step 3: Solve the system of first-order conditions for x, y, and λ
 Often most interested in simply eliminating the multiplier...
 - **.**..
 - **.**..
 - **-** ...
 - Optimality condition: at the optimum (x^*, y^*)

September 12, 2011

The Mathematics of Consumer Theory

LAGRANGE ANALYSIS

- Step 3: Solve the system of first-order conditions for x, y, and λ
 Often most interested in simply eliminating the multiplier...
 - **.**..
 - **...**
 - **u** ..
 - Optimality condition: at the optimum (x^*, y^*)



September 12, 2011

23

The Mathematics of Consumer Theory

LAGRANGE ANALYSIS

- ☐ Apply Lagrange tools to consumer optimization
- □ Objective function: $u(c_1, c_2)$
- □ Constraint: $g(c_1, c_2) = Y P_1 c_1 P_2 c_2 = 0$
- □ Step 1: Construct Lagrange function

$$L(c_1, c_2, \lambda) = u(c_1, c_2) + \lambda [Y - P_1c_1 - P_2c_2]$$

- Step 2: Compute first-order conditions with respect to c_1 , c_2 , λ
- Step 3: Solve (with focus on eliminating multiplier)

$$\frac{u_1(c_1^*, c_2^*)}{u_2(c_1^*, c_2^*)} = \frac{P_1}{P_2}$$

OPTIMALITY CONDITION

i.e., MRS = price ratio

September 12, 2011

