CONSUMPTION-LABOR FRAMEWORK (aka CONSUMPTION-LEISURE FRAMEWORK)

JANUARY 30, 2012

Introduction

BASICS

- ☐ Consumption-Leisure framework provides foundation for
 - □ Labor-market supply function
 - □ Goods-market demand function

 - $\hfill \square$...we will put a macro interpretation on it
 - ☐ Only one time period no "future" for which to save

January 30, 2012

			Introduci	tion	
	Ва	SIC	s		
		Consumption-Leisure framework – provides foundation for			
			Labor-market supply function		
			Goods-market demand function		
			An application of the basic consumer theory model		
			we will put a macro interpretation on it		
			Only one time period – no "future" for which to save		
		Not	ation		
			c: consumption ("all stuff")		
n + I =	140		n: number of hours spent working per week		
11 + 1 =	100 1		I: number of hours leisure per week (time spent not working)		
			P: dollar price of one unit of consumption (a nominal variable)		
			W: hourly wage rate in terms of dollars (a nominal variable)		
			t: tax rate on labor income		
		"Weekly" model a detail			
			Could have called it a daily model, a monthly model, a yearly model,		
			Just need to take SOME stand on the length of a "period"		
	Janua	ary 30,	2012 3		

	Building blocks of consumption-leisure framework
_	Building blocks of consumption-leisure framework
	Utility
	 Describes the benefits of engaging in labor market (and other) activities
	Budget constraint
	☐ Describes the costs of engaging in labor market (and other) activitie
	Utility and budgets two <u>DISTINCT</u> concepts
	☐ As in basic consumer analysis (Chapter 1)
	Only after describing utility and budgets separately do we bring the two together to obtain predictions from the framework

Model Structure

BUDGET CONSTRAINT

- Consumer must work for his income
 - Y no longer "falls from the sky"

$$Pc = Y$$

$$V = (1-t)Wn \text{ (all income is after-tax labor income)}$$

$$Pc = (1-t)Wn$$

$$V = 168 - I$$

$$Pc = (1-t)W(168 - I)$$

$$V = Rearrange$$

$$Pc + (1-t)Wl = 168(1-t)W$$

January 30, 2012

Model Structure

BUDGET CONSTRAINT

- Consumer must work for his income
 - Y no longer "falls from the sky"

$$Pc = Y$$

$$V = (1-t)Wn \text{ (all income is after-tax labor income)}$$

$$Pc = (1-t)Wn$$

$$V = 168 - I$$

$$Pc = (1-t)W(168 - I)$$

$$V = (1-t)WI = 168(1-t)W$$

$$V = (1-t)WI = 168(1-t)W$$
Spending on consumption Aconstant from the point of view of the individual (price-taker)
$$P_1c_1 + P_2c_2 = Y$$
Chapter 1 budget constraint

\ \ \ \

Spending Spending A constant from the point on c₁ on c₂ of view of the individual

January 30, 2012

Model Structure **BUDGET CONSTRAINT** Consumer must work for his income Y no longer "falls from the sky" Pc = YY = (1-t)Wn (all income is after-tax labor income) Pc = (1-t)Wnn = 168 - I Pc = (1-t)W(168-l)(After-tax) wage is opportunity cost of leisure, hence the "price" of leisure Rearrange - opportunity costs are real economic costs/prices Pc + (1-t)Wl = 168(1-t)WSimply an application/re-interpretation of our basic consumer theory framework Spending on consumption "Spending" on leisure on leisure on leisure sindividual (pricetaker) $P_1c_1 + P_2c_2 = Y$ Chapter 1 budget constraint Spending Spending A constant from the point on c₁ on c₂ of view of the individual January 30, 2012

Model Structure **CONSUMER OPTIMIZATION** Consumer's decision problem: maximize utility subject to budget constraint - bring together both cost side and benefit side Choose c and I subject to Pc + (1-t)Wl = 168(1-t)Woptimal choice (c*,I*) Plot budget line Superimpose indifference map At the optimal choice IMPORTANT: the larger is (1-t) W/P, the steeper is the budget line $u_l(c^*, l^*)$ slope = -(1-t)W/PCONSUMPTION-LEISURE OPTIMALITY CONDITION - A key building block of modern macro models MRS (between price ratio consumption and leisure) (inclusive of taxes) January 30, 2012 11

Macro Fundamentals

REAL WAGE

- □ W/P a key variable for macroeconomic analysis
- ☐ Unit Analysis (i.e., analyze algebraic units of variables)
 - □ Units(W) = \$/hour of work
 - ☐ Units(**P**) = \$/unit of consumption

January 30, 2012

Macro Fundamentals

REAL WAGE

- W/P a key variable for macroeconomic analysis
- ☐ Unit Analysis (i.e., analyze algebraic units of variables)
 - ☐ Units(**W**) = \$/hour of work
 - □ Units(P) = \$/unit of consumption

Units (*W/P*) =
$$\frac{\frac{\$}{\text{hour of work}}}{\$} = \frac{\$}{\text{hour of work}} \cdot \frac{\text{unit of consumption}}{\$}$$

 $= \frac{\text{unit of consumption}}{\text{hour of work}}$

January 30, 2012

13

Macro Fundamentals

REAL WAGE

- W/P a key variable for macroeconomic analysis
- ☐ Unit Analysis (i.e., analyze algebraic units of variables)
 - □ Units(W) = \$/hour of work
 - ☐ Units(**P**) = \$/unit of consumption

$$\Box \quad \text{Units}(W/P) = \frac{\frac{\$}{\text{hour of work}}}{\$} = \frac{\$}{\text{hour of work}} \cdot \frac{\text{unit of consumption}}{\$}$$

 $= \frac{\text{unit of consumption}}{\text{hour of work}} \qquad \qquad \begin{array}{c} \text{Will sometimes denote} \\ \text{using } \textbf{\textit{w} (lower-case...)} \end{array}$

- Economic decisions depend on real wages (W/P), not nominal wages (W)
 - ☐ Measures the purchasing power of (nominal) wage earnings...
 - □ ...which is presumably what people most care about

January 30, 2012

The Graphics of the Consumption-Leisure Model

CONSUMER OPTIMIZATION

- Consumer's decision problem: maximize utility subject to budget constraint – bring together both cost side and benefit side
 - Choose c and I subject to Pc + (1-t)Wl = 168(1-t)W
 - □ Plot budget line
 - Superimpose indifference map

□ At the optimal choice

CONSUMPTION-LEISURE
OPTIMALITY CONDITION
- key building block of modern
macro models

 $\frac{u_l(c^*, l^*)}{u_c(c^*, l^*)} = \frac{(1-t)W}{P}$ After the recognition of the state of the stat

MRS (between consumption and leisure)

After-tax real wage

slope = -(1-t) W/P
slope = -(1-t) W/P,
the steeper is the budget line

Derive consumption-leisure optimality condition using Lagrange analysis

January 30, 2012

15

The Mathematics of the Consumption-Leisure Model

LAGRANGE ANALYSIS

- ☐ Apply Lagrange tools to consumption-leisure optimization
- \Box Objective function: u(c,l)
- □ Constraint: g(c,I) = 168(1-t)W Pc (1-t)WI = 0
- □ Step 1: Construct Lagrange function

$$L(c,l,\lambda) = u(c,l) + \lambda \left[168(1-t)W - Pc - (1-t)Wl \right]$$

Step 2: Compute first-order conditions with respect to c, I, λ

January 30, 2012

The Mathematics of the Consumption-Leisure Model

LAGRANGE ANALYSIS

- ☐ Apply Lagrange tools to consumption-leisure optimization
- \Box Objective function: u(c,l)
- □ Constraint: g(c,I) = 168(1-t)W Pc (1-t)WI = 0
- □ Step 1: Construct Lagrange function

$$L(c,l,\lambda) = u(c,l) + \lambda \left[168(1-t)W - Pc - (1-t)Wl \right]$$

- Step 2: Compute first-order conditions with respect to c, I, λ
- Step 3: Solve (with focus on eliminating multiplier)

MRS (between After-tax real consumption and leisure) wage

January 30, 2012

THE MACROECONOMICS OF TIME

- ☐ Consumption-leisure model a static (i.e., one time period) model
- Dynamic models the core of modern macroeconomic theory
- □ Explicit consideration of how economic decisions/behaviors/outcomes unfold over multiple time periods
- ☐ Two-period framework (Chapters 3 and 4) the simplest possible multi-period framework
 - □ Will allow us to begin analyzing issues regarding interest rates and inflation (phenomena that occur across time)
 - Will allow us to think about credit restrictions and the "credit crunch"
- ☐ Infinite-period framework (Chapter 8)
 - Allows a richer quantitative description of the macroeconomy
 - ☐ Highlights the role of assets and the intersection between finance and macroeconomics

January 30, 2012