FIRMS IN THE TWO-PERIOD FRAMEWORK

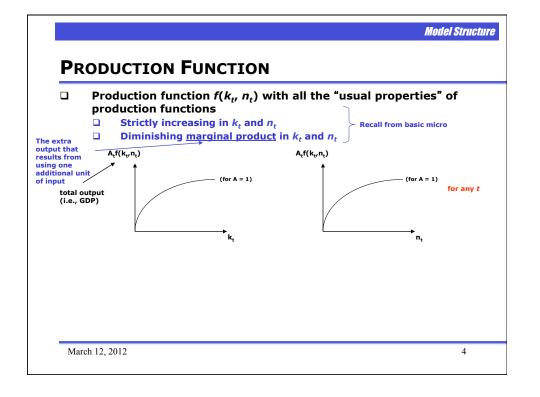
MARCH 12, 2012

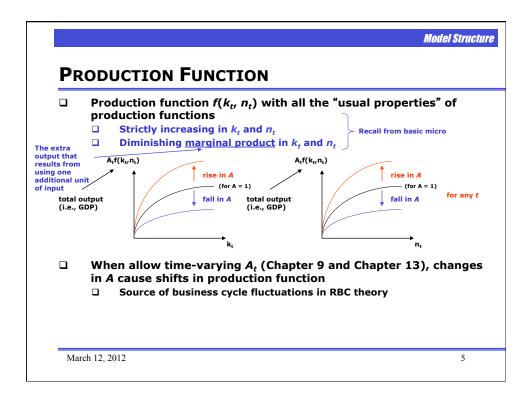
Introduction

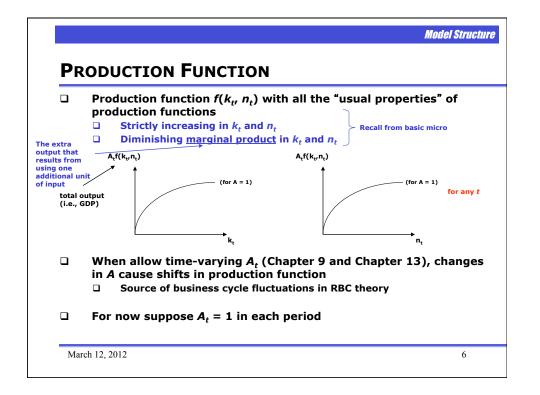
BASICS

- □ Embed firms in two-period (multi-period) economy
- ☐ In each period t, representative firm produces according to a production technology $A_t f(k_t, n_t)$
 - \square n_t : labor used for production
 - \square k_t : capital ("machines and equipment") used for production
 - A_t : total factor productivity
 - ☐ A catch-all measure for level of sophistication of technology
 - Real Business Cycle (RBC) view: the driving force behind the periodic ups and downs of macroeconomic activity (Chapter 13)
 - □ For now, suppose $A_t = 1$ always (i.e., in both period 1 and 2)

Introduction **BASICS** Embed firms in two-period (multi-period) economy In each period t, representative firm produces according to a production technology $A_t f(k_t, n_t)$ n_t : labor used for production k_t : capital ("machines and equipment") used for production At: total factor productivity A catch-all measure for level of sophistication of technology Real Business Cycle (RBC) view: the driving force behind the periodic ups and downs of macroeconomic activity (Chapter 13) For now, suppose $A_t = 1$ always (i.e., in both period 1 and 2) Broad macro view of the factors of production Labor - all types Can also think of education The function f(k, n) describes how capital and labor combine with each other to **Capital Machines and equipment** and other Trucks intangibles yield output (goods) (i.e., experience, **Factories** An accumulation (i.e., stock) variable, NOT a flow brand name) as "capital" Takes time to build capital (simple starting assumption: takes one period) March 12, 2012







CAPITAL AND INVESTMENT

- ☐ Capital takes time to build
- ☐ Firms must decide in period t how much capital they want to use in the production process in t+1
- □ Investment
 - The <u>change</u> in a firm's capital stock between two consecutive periods
 - □ A technical term
 - ☐ Does <u>not</u> refer to consumers' purchase of stocks, bonds, etc

"I've got \$1000 invested in Microsoft stock."

March 12, 2012

Macro Fundamentals

CAPITAL AND INVESTMENT

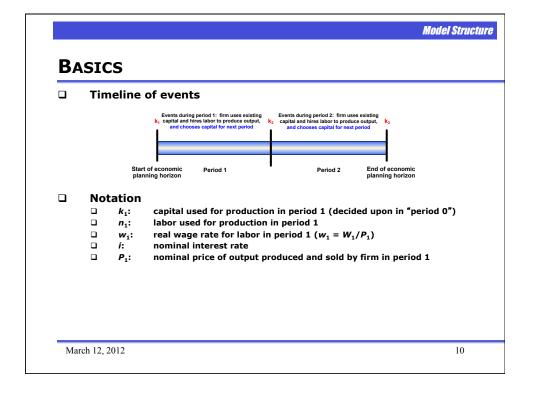
- □ Capital takes time to build
- ☐ Firms must decide in period t how much capital they want to use in the production process in t+1
- □ Investment
 - ☐ The <u>change</u> in a firm's capital stock between two consecutive periods
 - □ A technical term
 - □ Does <u>not</u> refer to consumers' purchase of stocks, bonds, etc

"I've got \$1000 saved as assets in Microsoft stock."

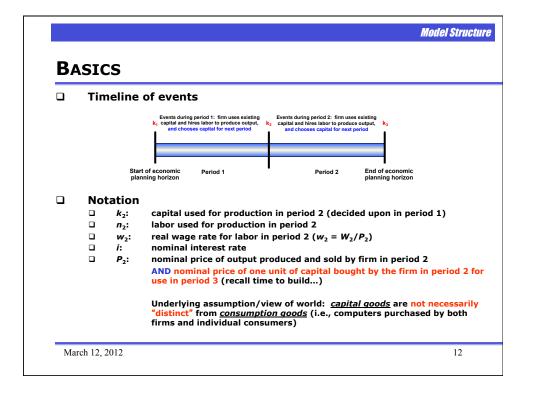
☐ Investment: a flow variable

- ☐ Analogous to consumers' savings
- ☐ Capital: a stock variable
 - ☐ Analogous to consumers' wealth/asset position
 - Except k cannot be negative (negative machines?...)

Macro Fundamentals **CAPITAL AND INVESTMENT** Capital takes time to build Firms must decide in period t how much capital they want to use in the production process in t+1 **Investment** The *change* in a firm's capital stock between two consecutive periods A technical term Does not refer to consumers' purchase of stocks, bonds, etc "I've got \$1000 saved as assets in Microsoft stock." Investment: a flow variable Analogous to consumers' savings Capital: a stock variable Analogous to consumers' wealth/asset position ■ Except k cannot be negative (negative machines?...) One of the components of GDP (= C + I + G + NX) Investment comprises ≈ 15% of GDP in U.S. Investment comprises $\approx 40\%$ of GDP in China (high I drives rapid growth) March 12, 2012

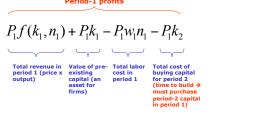


Model Structure **BASICS Timeline of events** Events during period 2: firm uses existing capital and hires labor to produce output, and chooses capital for next period Start of economic planning horizon Period 1 Period 2 End of economic planning horizon **Notation** k_1 : capital used for production in period 1 (decided upon in "period 0") labor used for production in period 1 n_1 : w₁: real wage rate for labor in period 1 ($W_1 = W_1/P_1$) nominal interest rate i: nominal price of output produced and sold by firm in period 1 P_1 : AND nominal price of one unit of capital bought by the firm in period 1 for use in period 2 (recall time to build...) Underlying assumption/view of world: <u>capital goods</u> are <u>not necessarily</u> "distinct" from <u>consumption goods</u> (i.e., computers purchased by both firms and individual consumers) March 12, 2012



FIRM PROFIT MAXIMIZATION

- □ A <u>dynamic</u> profit maximization problem
 - Because firm exists for both periods
 - All analysis conducted from the perspective of the very beginning of period 1
 - → Must consider present-discounted-value (PDV) of lifetime (i.e., two-period) profits
- □ Dynamic profit function
 - (specified in nominal terms could specify in real terms...)



March 12, 2012

Model Structure

FIRM PROFIT MAXIMIZATION

- □ A <u>dynamic</u> profit maximization problem
 - $\ \square$ Because firm exists for both periods
 - $\hfill \square$ All analysis conducted from the perspective of the very beginning of period 1
 - → Must consider present-discounted-value (PDV) of lifetime (i.e., two-period) profits
- □ Dynamic profit function
 - $P_{1}f(k_{1},n_{1}) + P_{1}k_{1} P_{1}w_{1}n_{1} P_{1}k_{2} + \underbrace{\frac{P_{2}f(k_{2},n_{2})}{1+i} + \frac{P_{2}k_{2}}{1+i} \frac{P_{2}w_{2}n_{2}}{1+i} \frac$
- □ Two-period framework: $k_3 = 0$ (no machines needed in "period 3")

FIRM PROFIT MAXIMIZATION

$$P_1 f(k_1, n_1) + P_1 k_1 - P_1 w_1 n_1 - P_1 k_2 + \frac{P_2 f(k_2, n_2)}{1+i} + \frac{P_2 k_2}{1+i} - \frac{P_2 w_2 n_2}{1+i} - \frac{P_2 k_3^2}{1+i}$$

FOCs with respect to n_1 , n_2 , k_2

Identical except for time subscripts \rightarrow with respect to n_1 : $P_1f_n(k_1,n_1) - P_1w_1 = 0$ Equation 1 $P_2f_n(k_2,n_2) - P_1w_1 = 0$ Equation 2 with respect to k_2 : $-P_1 + \frac{P_2 f_k(k_2, n_2)}{1+i} + \frac{P_2}{1+i} = 0$ Equation 3

March 12, 2012

Model Structure

FIRM PROFIT MAXIMIZATION

Re-express equation 3

$$-P_1 + \frac{P_2 f_k(k_2, n_2)}{1+i} + \frac{P_2}{1+i} = 0 \qquad \xrightarrow{\text{Divide by } P_1} \qquad \frac{P_2 f_k(k_2, n_2)}{P_1(1+i)} + \frac{P_2}{P_1(1+i)} = 1$$

$$\frac{\text{Group terms}}{\text{informatively}} \xrightarrow{\qquad \qquad } \left(\frac{P_2}{P_1}\right) \left(\frac{1}{1+i}\right) f_k(k_2,n_2) + \left(\frac{P_2}{P_1}\right) \left(\frac{1}{1+i}\right) = 1 \\ \xrightarrow{\qquad \qquad } \left(\frac{1+\pi_2}{1+i}\right) f_k(k_2,n_2) + \left(\frac{1+\pi_2}{1+i}\right) = 1$$

FIRM PROFIT MAXIMIZATION

□ Re-express equation 3

$$-P_1 + \frac{P_2 f_k(k_2, n_2)}{1+i} + \frac{P_2}{1+i} = 0 \xrightarrow{\text{Divide by } P_1} \frac{P_2 f_k(k_2, n_2)}{P_1(1+i)} + \frac{P_2}{P_1(1+i)} = 1$$

 $\frac{\text{Group terms informatively}}{ \qquad \qquad } \left(\frac{P_2}{P_1} \right) \left(\frac{1}{1+i} \right) f_k(k_2, n_2) + \left(\frac{P_2}{P_1} \right) \left(\frac{1}{1+i} \right) = 1 \qquad \qquad \frac{\left(\frac{1+\pi_2}{1+i} \right) f_k(k_2, n_2) + \left(\frac{1+\pi_2}{1+i} \right) = 1}{1+i} \right) = 1$

 $f_k(k_2,n_2)=r$ Equivalent/alternative representation of firm profit-maximizing condition for capital

March 12, 2012 17

Model Structure

FIRM PROFIT MAXIMIZATION

$$P_{1}f(k_{1},n_{1}) + P_{1}k_{1} - P_{1}w_{1}n_{1} - P_{1}k_{2} + \frac{P_{2}f(k_{2},n_{2})}{1+i} + \frac{P_{2}k_{2}}{1+i} - \frac{P_{2}w_{2}n_{2}}{1+i} - \frac{P_{2}k_{3}^{2}}{1+i}$$

 \Box FOCs with respect to n_1 , n_2 , k_2

Identical except for time subscripts with respect to n_1 : $P_1f_n(k_1,n_1) - P_1w_1 = 0$ Equation 1 $\frac{P_2f_n(k_2,n_2)}{1+i} - \frac{P_2w_2}{1+i} = 0$ Equation 2 $\frac{P_2f_n(k_2,n_2)}{1+i} + \frac{P_2}{1+i} = 0$ Equation 3

□ Profit-maximizing labor hiring implies

$$f_n(k_1, n_1) = w_1$$
 AND $f_n(k_2, n_2) = w_2$

□ Profit-maximizing capital purchases (for the future...) implies

$$f_k(k_2, n_2) = r$$

FIRM PROFIT MAXIMIZATION

$$P_1 f(k_1, n_1) + P_1 k_1 - P_1 w_1 n_1 - P_1 k_2 + \frac{P_2 f(k_2, n_2)}{1+i} + \frac{P_2 k_2}{1+i} - \frac{P_2 w_2 n_2}{1+i} - \frac{P_2 w_3 n_2}{1+i}$$

FOCs with respect to n_1 , n_2 , k_2

Identical with respect to n_1 : $P_1 f_n(k_1, n_1) - P_1 w_1 = 0$ with respect to n_2 : $\frac{P_2 f_n(k_2, n_2)}{1+i} - \frac{P_2 w_2}{1+i} = 0$ with respect to k_2 : $-P_1 + \frac{P_2 f_k(k_2, n_2)}{1+i} + \frac{P_2}{1+i} = 0$ Equation 2 $f_k(k_2, n_2) = r$ Equation 3

- Marginal product of labor
 - - Sometimes denote by mpn,
- Marginal product of capital
 - $f_k(k_t,n_t)$
 - Sometimes denote by mpk,

These FOCs are foundation for:

- 1. Labor Demand
- 2. Capital/Investment Demand

March 12, 2012

Macro Fundamentals

COBB-DOUGLAS PRODUCTION FUNCTION

A commonly-used functional form in modern quantitative macroeconomic analysis

$$f(k_t, n_t) = k_t^{\alpha} n_t^{1-\alpha}$$

(saw Cobb-Douglas utility function on Problem Set 1)

- Describes the empirical relationship between aggregate GDP, aggregate capital, and aggregate labor quite well
- $\alpha \in (0,1)$ measures capital's share of output
 - Hence $(1-\alpha)\in(0,1)$ measures labor's share of output
 - Interpretation
 - The relative importance of (either) capital (or labor) in the production process

COBB-DOUGLAS PRODUCTION FUNCTION

A commonly-used functional form in modern quantitative macroeconomic analysis

$$f(k_{\scriptscriptstyle t},n_{\scriptscriptstyle t}) = k_{\scriptscriptstyle t}^{\alpha} n_{\scriptscriptstyle t}^{1-\alpha} \tag{saw Cobb-Douglas utility function on Problem Set 1)}$$

- Describes the empirical relationship between aggregate GDP, aggregate capital, and aggregate labor quite well
- \square $\alpha \in (0,1)$ measures capital's share of output
 - □ Hence $(1-\alpha) \in (0,1)$ measures labor's share of output
 - □ Interpretation
 - The relative importance of (either) capital (or labor) in the production process
 - □ Estimates for U.S. economy: $\alpha \approx 0.3$
 - \square Estimates for Chinese economy: $\alpha \approx 0.15$ (not (yet) a very capital-rich economy)
- □ Cobb-Douglas form useful for illustrating factor demands

 - $mpk_t = f_k(k_t, n_t) = \alpha k_t^{\alpha 1} n_t^{1 \alpha}$

March 12, 2012

Labor Demand in the Micro

MICRO-LEVEL LABOR DEMAND

☐ Firm-level demand for labor defined by the relation

Follows from Equation 1 and Equation 2

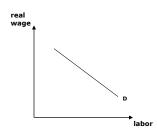
$$W_t = (1 - \alpha)k_t^{\alpha} n_t^{-\alpha} (= mpn_t)$$

for both t = 1 and t = 2

Because exponent (-a) is a negative number, can move to denominator

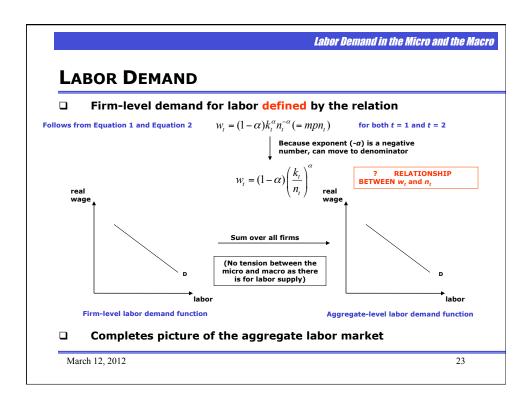
 $w_t = (1 - \alpha) \left(\frac{k_t}{n_t}\right)^{\alpha}$

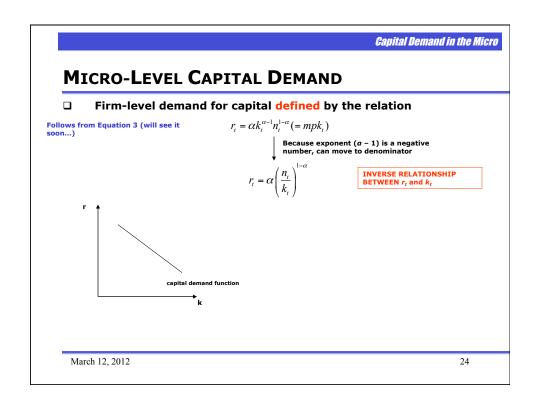
? RELATIONSHIP BETWEEN w_t and n_t

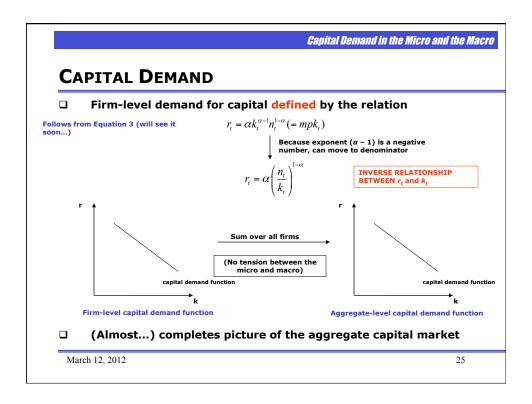


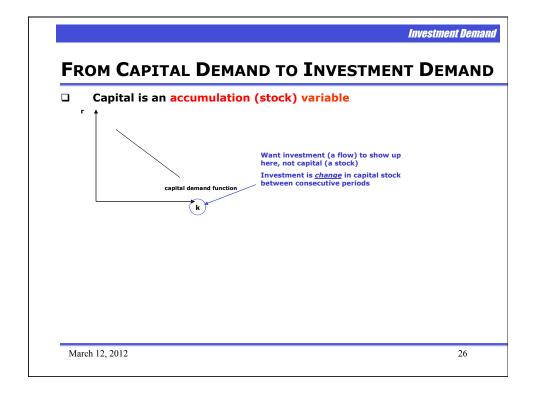
March 12, 2012

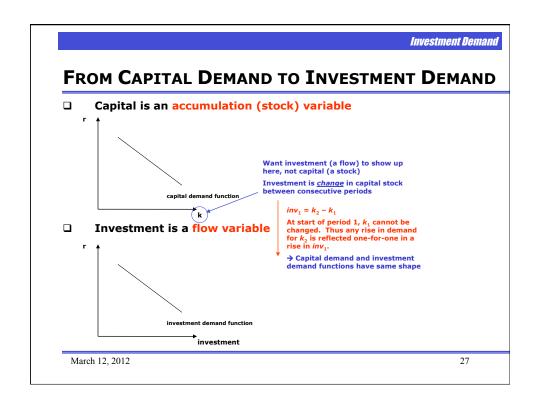
22

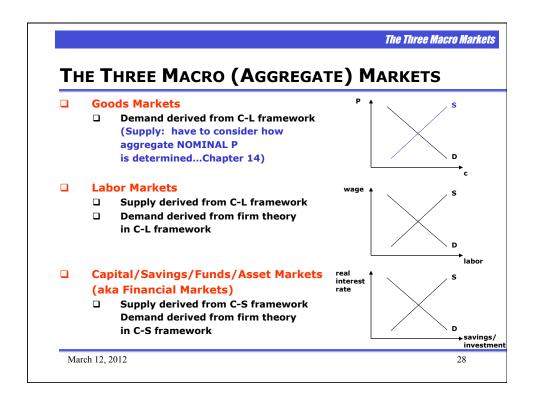












REAL INTEREST RATE

- r a key variable for macroeconomic analysis
- □ Chapter 4: r measures the price of period-1 consumption in terms of period-2 consumption
- □ Chapter 8: *r* reflects degree of impatience (in the long run)
- \Box r often reflects rate of consumption growth between periods

March 12, 2012 29

Macro Fundamentals

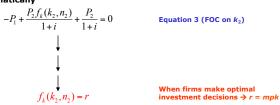
REAL INTEREST RATE

- r a key variable for macroeconomic analysis
- Chapter 4: r measures the price of period-1 consumption in terms of period-2 consumption
- \Box Chapter 8: r reflects degree of impatience (in the long run)
- $\ \square$ r often reflects rate of consumption growth between periods
 - Now: r measures the price of capital (machine and equipment) purchases by firms
 - Reflects (real!) opportunity cost of sinking funds into capital today that won't bear fruit (i.e., help produce output) until the future
 - Regardless of whether firm actually has to "borrow" to purchase capital

REAL INTEREST RATE

- r a key variable for macroeconomic analysis
- Chapter 4: $\it r$ measures the price of period-1 consumption in terms of period-2 consumption
- Chapter 8: r reflects degree of impatience (in the long run)
- r often reflects rate of consumption growth between periods
- Now: r measures the price of capital (machine and equipment) purchases by
 - Reflects (real!) <u>opportunity cost</u> of sinking funds into capital <u>today</u> that won't bear fruit (i.e., help produce output) until the <u>future</u>

 Regardless of whether firm actually has to "borrow" to purchase capital
 - Can see it mathematically



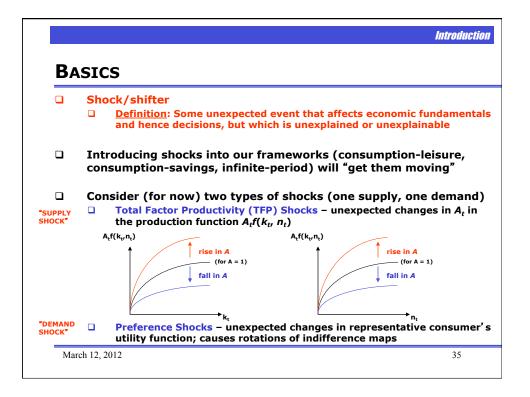
March 12, 2012

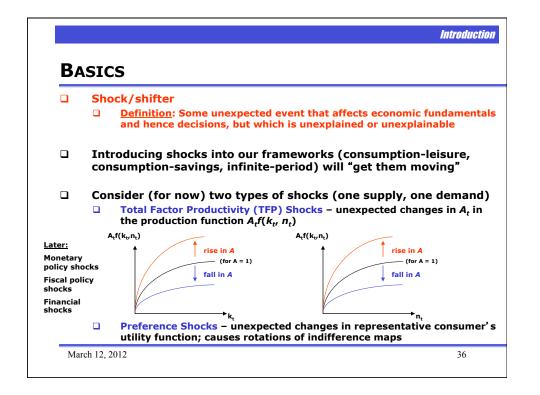
SHOCKS

MARCH 12, 2012

Introduction **BASICS** Shock/shifter **<u>Definition</u>**: Some unexpected event that affects economic fundamentals and hence decisions, but which is unexplained or unexplainable Introducing shocks into our frameworks (consumption-leisure, consumption-savings, infinite-period) will "get them moving" Consider (for now) two types of shocks (one supply, one demand) Total Factor Productivity (TFP) Shocks – unexpected changes in A_t in the production function $A_t f(k_t, n_t)$ rise in A rise in A _ (for A = 1) _ (for A = 1) fall in A fall in A March 12, 2012

Introduction **BASICS** Shock/shifter **Definition:** Some unexpected event that affects economic fundamentals and hence decisions, but which is unexplained or unexplainable Introducing shocks into our frameworks (consumption-leisure, consumption-savings, infinite-period) will "get them moving" Consider (for now) two types of shocks (one supply, one demand) Total Factor Productivity (TFP) Shocks - unexpected changes in A, in the production function $A_t f(k_t, n_t)$ $A_t f(k_t, n_t)$ rise in A rise in A (for A = 1) — (for A = 1) fall in A fall in A Changes in consumer confidence" Preference Shocks - unexpected changes in representative consumer's utility function; causes rotations of indifference maps March 12, 2012





TFP Shocks

TFP IN COBB-DOUGLAS PRODUCTION FUNCTION

 Revisit the commonly-used functional form in modern quantitative macroeconomic analysis

output_t =
$$A_t f(k_t, n_t) = A_t k_t^{\alpha} n_t^{1-\alpha}$$

- Describes the empirical relationship between aggregate output, aggregate capital, aggregate labor, and level of sophistication of technology (TFP)
 - ☐ (How to measure TFP in Chapter 13)
- □ Cobb-Douglas form useful for illustrating effects of TFP shocks

March 12, 2012

TFP Shocks

TFP IN COBB-DOUGLAS PRODUCTION FUNCTION

 Revisit the commonly-used functional form in modern quantitative macroeconomic analysis

$$output_t = A_t f(k_t, n_t) = A_t k_t^{\alpha} n_t^{1-\alpha}$$

- Describes the empirical relationship between aggregate output, aggregate capital, aggregate labor, and level of sophistication of technology (TFP)
 - (How to measure TFP in Chapter 13)
- $\begin{tabular}{ll} \square & Cobb-Douglas form useful for illustrating effects of TFP shocks \\ \end{tabular}$
- \Box Unexpected change (i.e., a shock) in A_t
 - Causes change in marginal product of labor

$$mpn_{t} = \frac{\partial \text{output}_{t}}{\partial n_{t}} = \frac{A_{t}}{A_{t}} f_{n}(k_{t}, n_{t}) = \frac{A_{t}}{A_{t}} (1 - \alpha) k_{t}^{\alpha} n_{t}^{-\alpha}$$

Recall mpn is foundation for labor demand

Causes change in marginal product of capital

$$mpk_{t} = \frac{\partial \text{output}_{t}}{\partial k_{t}} = \frac{\mathbf{A}_{t}}{\mathbf{f}_{k}}(k_{t}, n_{t}) = \frac{\mathbf{A}_{t}}{\mathbf{\alpha}} \alpha k_{t}^{\alpha - 1} n_{t}^{1 - \alpha}$$

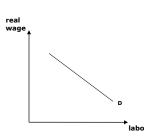
Recall mpk is foundation for capital/investment demand

TFP Shocks

TFP SHOCKS AND LABOR DEMAND

☐ Firm-level demand for labor defined by the relation

$$\begin{split} w_{t} &= A_{t}(1-\alpha)k_{t}^{\alpha}n_{t}^{-\alpha}(=mpn_{t}) \\ & \qquad \qquad \qquad \qquad \Big| & \text{Because exponent (-a) is a negative number, can move to denominator} \\ & w_{t} &= A_{t}(1-\alpha)\bigg(\frac{k_{t}}{n_{t}}\bigg)^{\alpha} \end{split}$$



March 12, 2012

39

TFP Shocks

TFP SHOCKS AND LABOR DEMAND

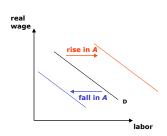
☐ Firm-level demand for labor defined by the relation

$$w_t = \frac{A_t}{(1 - \alpha)} k_t^{\alpha} n_t^{-\alpha} (= mpn_t)$$

Because exponent (-a) is a negative number, can move to denominator

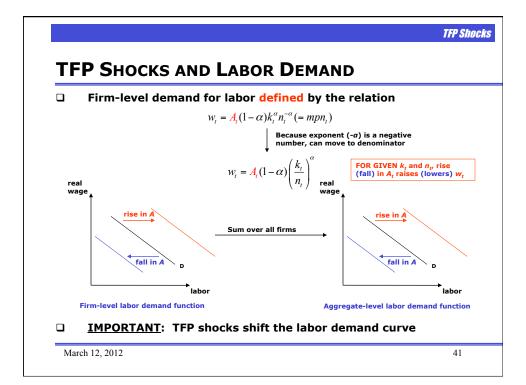
$$w_t = \frac{A_t}{(1 - \alpha)} \left(\frac{k_t}{n_t}\right)^{\alpha}$$

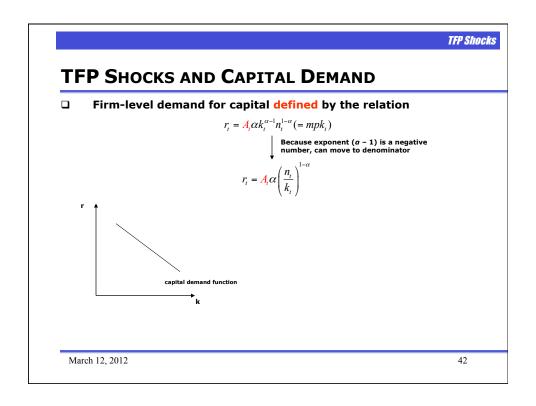
FOR GIVEN k_t and n_t rise (fall) in A_t raises (lowers) w_t



March 12, 2012

40

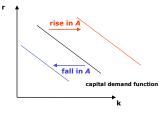




TFP Shocks

TFP SHOCKS AND CAPITAL DEMAND

☐ Firm-level demand for capital defined by the relation



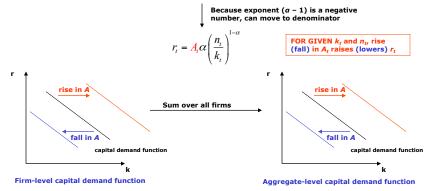
March 12, 2012 4

TFP Shocks

TFP SHOCKS AND CAPITAL/INVESTMENT DEMAND

 $r_t = A_t \alpha k_t^{\alpha - 1} n_t^{1 - \alpha} (= mpk_t)$

Firm-level demand for capital defined by the relation



□ <u>IMPORTANT</u>: TFP shocks shift the capital demand (and hence investment demand – recall $inv_t = k_{t+1} - k_t$) curve

Preference Shocks

PREFERENCE SHOCKS

- ☐ Illustrate idea using consumption-leisure framework
 - Preference shocks in consumption-savings framework:
 Problem Set 6
- □ Utility function (modified from Chapter 2): u(Bc, I)
 - \Box c: consumption
 - □ /: leisure
 - □ B: preference shifter, with B > 0
 - □ Chapter 2: were implicitly considering B = 1

March 12, 2012 4

Preference Shocks

PREFERENCE SHOCKS

- ☐ Illustrate idea using consumption-leisure framework
 - Preference shocks in consumption-savings framework:
 Problem Set 6
- □ Utility function (modified from Chapter 2): u(Bc, I)
 - \Box c: consumption
 - *I*: leisure
 - □ B: preference shifter, with B > 0
 - □ Chapter 2: were implicitly considering B = 1
- ☐ Mechanics of B
 - ☐ Makes <u>each</u> unit of c more (high B) desirable...
 - ...or less (low B) desirable
- ☐ Interpretation of B
 - "Cultural" events that alter individuals' <u>desires</u>
 "Political" events that alter individuals' <u>desires</u>
 - Any other events that alter individuals' <u>desires</u>

<u>Society-wide</u> events that alter a <u>given</u> person's desires – hence "taken as given" by an individual

		ce:		

PREFERENCE SHOCKS

MRS between consumption and leisure

Definition is same as always
$$MRS_{c,i} = \frac{\partial u/\partial l}{\partial u/\partial c}$$

$$MRS_{c,l} = \frac{\partial u / \partial l}{\partial u / \partial c}$$

March 12, 2012

Preference Shocks

PREFERENCE SHOCKS

MRS between consumption.

Definition is same as always $MRS_{c,t} = \frac{\partial u/\partial l}{\partial u/\partial c}$ MRS between consumption and leisure

$$MRS_{c,l} = \frac{\partial u / \partial l}{\partial u / \partial r}$$

But now need chain rule of calculus to compute $\partial u/\partial c$

 \Box Because first argument of u(.) is now the <u>composite</u> Bc_r not simply c

Chain rule: $\partial u/\partial c = u_1(Bc,l) \cdot B$ (grab the *B* term inside the first argument)

Prei			

PREFERENCE SHOCKS

- ☐ MRS between consumption and leisure
 - Definition is same as always

$$MRS_{c,l} = \frac{\partial u / \partial l}{\partial u / \partial c}$$

- □ But now need chain rule of calculus to compute $\frac{\partial u}{\partial c}$
 - \square Because first argument of u(.) is now the <u>composite</u> Bc, not simply c
- □ Chain rule: $\partial u/\partial c = u_1(Bc,l) \cdot B$ (grab the *B* term inside the first argument)
- MU of leisure same as always: $\partial u / \partial l = u_2(Bc_1)$
- □ → MRS between consumption and leisure
 - ☐ B affects MRS in "two" ways a "direct" effect and an "indirect" effect

$$MRS_{c,l} = \frac{\partial u \, / \, \partial l}{\partial u \, / \, \partial c} = \frac{1}{B} \cdot \frac{u_2(Bc,l)}{u_1(Bc,l)}$$

March 12, 2012

Preference Shocks

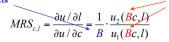
PREFERENCE SHOCKS

- MRS between consumption and leisure
 - □ Definition is same as always

$$MRS_{c,l} = \frac{\partial u / \partial l}{\partial u / \partial c}$$

- $f \square$ But now need chain rule of calculus to compute $\partial u/\partial c$
 - \square Because first argument of u(.) is now the <u>composite</u> Bc, not simply c
- □ Chain rule: $\partial u/\partial c = u_1(Bc,l) \cdot B$ (grab the *B* term inside the first argument)
- MU of leisure same as always: $\partial u / \partial l = u_2(Bc, l)$
- ☐ → MRS between consumption and leisure
 - ☐ B affects MRS in "two" ways a "direct" effect and an "indirect" effect

Focus on how the effects of *B* here alter indifference curves ("DIRECT EFFECT")



The effects of B here, to firstorder, roughly cancel out (affects numerator and denominator in same way) ("INDIRECT EFFECT")

PREFERENCE SHOCKS AND INDIFFERENCE MAPS

$$MRS_{c,l} = \frac{\partial u \, / \, \partial l}{\partial u \, / \, \partial c} = \frac{1}{B} \cdot \frac{u_2(Bc,l)}{u_1(Bc,l)}$$

IF B RISES

Rise in ${\it B}$ flattens all indifference curves (i.e., lowers ${\it MRS}$ at any point in ${\it c-l}$ space).

March 12, 2012 51

Preference Shocks

PREFERENCE SHOCKS AND INDIFFERENCE MAPS

$$MRS_{c,l} = \frac{\partial u / \partial l}{\partial u / \partial c} = \frac{1}{B} \cdot \frac{u_2(Bc,l)}{u_1(Bc,l)}$$

IF B RISES

Rise in B flattens all indifference curves (i.e., lowers MRS at any point in c-I space).

<u>Interpretation</u>: each unit of *c* more valuable, so <u>decreased willingness</u> to trade *c* for one more unit of *l*

→ leisure

Superimpose a budget line: optimal choice of *c* and *l* clearly affected by shock to *B*

IF B FALLS

Fall in ${\it B}$ steepens all indifference curves (i.e., raises MRS at any point in $c\text{-}{\it I}$ space).

<u>Interpretation</u>: each unit of *c* less valuable, so <u>increased willingness</u> to trade *c* for one more unit of *l*

→ leisure

March 12, 2012

52

Where Things Are Going

PREVIEW OF BUSINESS CYCLE THEORY

 Modern macro view: periodic ups and downs of macroeconomic activity driven fundamentally by (various and many) shocks

- ☐ Supply shocks: TFP shocks, others
- Demand shocks: preference shocks, monetary policy shocks (Chapter 14), others

March 12, 2012 5

Where Things Are Going

PREVIEW OF BUSINESS CYCLE THEORY

 Modern macro view: periodic ups and downs of macroeconomic activity driven fundamentally by (various and many) shocks

- ☐ Supply shocks: TFP shocks, others
- Demand shocks: preference shocks, monetary policy shocks (Chapter 14), others
- ☐ Shocks over time lead to changes over time in
 - Consumers' incentives to work, save, and consume
 - □ Firms' incentives to hire, invest, and produce

Economy's response(s) to shocks mediated through labor markets, capital markets, and goods markets

INTERTEMPORAL CONSUMPTION-LEISURE FRAMEWORK

MARCH 12, 2012

Introduction

BASICS

- □ Consumption-Leisure Framework
 - ☐ Foundation for goods-market demand and labor-market supply
 - □ Optimality condition

$$\frac{\partial u/\partial l}{\partial u/\partial c} = (1-t)w$$

- □ Consumption-Savings Framework
 - ☐ Foundation for (period-t) goods-market demand and asset-market supply
 - □ Optimality condition

$$\frac{\partial u / \partial c_1}{\partial u / \partial c_2} = 1 + r$$

Introduction

BASICS

- □ Consumption-Leisure Framework
 - ☐ Foundation for goods-market demand and labor-market supply
 - Optimality condition

$$\frac{\partial u / \partial l}{\partial u / \partial c} = (1 - t)w$$

- □ Consumption-Savings Framework
 - \square Foundation for (period-t) goods-market demand and asset-market supply
 - □ Optimality condition

$$\frac{\partial u / \partial c_1}{\partial u / \partial c_2} = 1 + r$$

Bring together consumption-savings margin with the consumption-leisure margin
 Can put a β here

Utility function: $v(c_1, l_1, c_2, l_2) = u(c_1, l_1) + u(c_2, l_2)$

- Dropping the assumption from simple (Chapter 3 and 4) two-period framework that income "falls from the sky"
- Representative consumer has to work for his (labor) income in <u>each</u> period

March 12, 2012 5

Model Structure

UTILITY AND BUDGET CONSTRAINTS

- Utility function: $v(c_1, l_1, c_2, l_2) = u(c_1, l_1) + u(c_2, l_2)$
- □ Budget constraints
 - ☐ Period-1 budget constraint (nominal terms)

$$P_1c_1 + A_1 - A_0 = iA_0 + (1 - t_1)W_1(168 - l_1)$$

□ Period-2 budget constraint (nominal terms)

$$P_2c_2 + A_2 - A_1 = iA_1 + (1 - t_2)W_2(168 - l_2)$$

UTILITY AND BUDGET CONSTRAINTS

- Utility function: $v(c_1, l_1, c_2, l_2) = u(c_1, l_1) + u(c_2, l_2)$
- **Budget constraints**
 - Period-1 budget constraint (nominal terms)

$$P_1c_1 + A_1 - A_0 = iA_0 + (1 - t_1)W_1(168 - l_1)$$

Period-2 budget constraint (nominal terms)

$$P_2c_2 + A_2 - A_1 = iA_1 + (1 - t_2)W_2(168 - l_2)$$

Derive (nominal) LBC as usual (solve P2BC for A_1 and insert in

P1BC)
$$P_{1}c_{1} + \frac{P_{2}c_{2}}{1+i} = (1-t_{1})W_{1}(168-l_{1}) + \frac{(1-t_{2})W_{2}(168-l_{2})}{1+i} + (1+i)A_{0}$$
 Or in real terms (work out details yourself)

$$c_1 + \frac{c_2}{1+r} = (1-t_1)w_1(168-l_1) + \frac{(1-t_2)w_2(168-l_2)}{1+r} + (1+r)a_0$$

Or if infinite number of periods

$$\sum_{t=0}^{\infty} \frac{c_t}{(1+r)^t} = \sum_{t=0}^{\infty} \frac{(1-t_t)w_t(168-l_t)}{(1+r)^t} + (1+r)a$$

 $\sum_{i=0}^{\infty}\frac{c_i}{(1+r)^i}=\sum_{i=0}^{\infty}\frac{(1-t_i)w_i(168-l_i)}{(1+r)^i}+(1+r)a_0$ Assuming r is constant every period (slightly more complicated expression if r_t fluctuates every period)

March 12, 2012

Macro Fundamentals

CONSUMPTION-SAVINGS MARGIN

- Describes decision of how much to consume in "short run" (period t) versus save for "long run" (period t+1 and beyond)
 - A decision that spans periods
- Think of as orthogonal to (i.e., independent of) the consumptionleisure margin
- Optimal choice (two-period framework) described by

$$\frac{\partial u / \partial c_1}{\partial u / \partial c_2} = 1 + r$$

Optimal choice (infinite-period framework) described by

$$\frac{\partial u / \partial c_t}{\partial u / \partial c_{t+1}} = 1 + r_t$$

CONSUMPTION-SAVINGS MARGIN

- Describes decision of how much to consume in "short run" (period t) versus save for "long run" (period t+1 and beyond)
 - A decision that spans periods
- Think of as orthogonal to (i.e., independent of) the consumption-leisure margin
- Optimal choice (two-period framework) described by

$$\frac{\partial u / \partial c_1}{\partial u / \partial c_2} = 1 + r$$

Optimal choice (infinite-period framework) described by

$$\frac{\partial u \, / \, \partial c_{t}}{\partial u \, / \, \partial c_{t+1}} = 1 + r_{t}, \quad \frac{\partial u \, / \, \partial c_{t+1}}{\partial u \, / \, \partial c_{t+2}} = 1 + r_{t+1}, \quad \frac{\partial u \, / \, \partial c_{t+2}}{\partial u \, / \, \partial c_{t+3}} = 1 + r_{t+2}, \quad \frac{\partial u \, / \, \partial c_{t+4}}{\partial u \, / \, \partial c_{t+5}} = 1 + r_{t+4}, \quad \text{etc.}$$

Recall: can think of infinite-period framework as sequence of overlapping two-period frameworks

March 12, 2012

Macro Fundamentals

CONSUMPTION-LEISURE MARGIN

- Describes decision within a period (i.e., focusing just on "short run") of how much to consume versus how much to work
 - A decision that does <u>not</u> span periods
- Think of as orthogonal to (i.e., independent of) the consumptionsavings margin
- Optimal choice (two-period framework) described by

$$\frac{\partial u \, / \, \partial l_1}{\partial u \, / \, \partial c_1} = (1 - t_1) w_1 \qquad \qquad \frac{\partial u \, / \, \partial l_2}{\partial u \, / \, \partial c_2} = (1 - t_2) w_2 \qquad \qquad \text{i.e., for } \frac{\textit{each}}{\textit{the two periods}}$$

$$\frac{\partial u / \partial l_2}{\partial u / \partial c_2} = (1 - t_2) w_2$$

CONSUMPTION-LEISURE MARGIN

- Describes decision within a period (i.e., focusing just on "short run") of how much to consume versus how much to work
 - ☐ A decision that does <u>not</u> span periods
- ☐ Think of as orthogonal to (i.e., independent of) the consumptionsavings margin
- □ Optimal choice (two-period framework) described by

$$\frac{\partial u / \partial l_1}{\partial u / \partial c_1} = (1 - t_1) w_1 \qquad \qquad \frac{\partial u / \partial l_2}{\partial u / \partial c_2} = (1 - t_2) w_2 \qquad \qquad \text{i.e., for } \underline{each} \\ \text{the two period}$$

Optimal choice (infinite-period framework) described by

$$\frac{\partial u / \partial l_t}{\partial u / \partial c_t} = (1 - t_t) w_t, \frac{\partial u / \partial l_{t+1}}{\partial u / \partial c_{t+1}} = (1 - t_{t+1}) w_{t+1}, \quad \frac{\partial u / \partial l_{t+2}}{\partial u / \partial c_{t+2}} = (1 - t_{t+2}) w_{t+2}, \quad \text{etc.}$$

 Consumption-leisure decision "looks the same every period" in infiniteperiod environment

March 12, 2012 6

Macro Fundamentals

BUILDING BLOCKS OF MODERN MACRO THEORY

- Intertemporal consumption-leisure framework the foundation of modern macroeconomic theory
 - Referred to as Dynamic General Equilibrium (DGE) Theory
 - Both Real Business Cycle (RBC) theory and New Keynesian (NK) theory (the two dominant current schools of macroeconomic thinking)
- Power of DGE approach demonstrated by RBC theorists in early 1980's – idea of DGE theory has been adopted by nearly all other macro camps
 - Even though important ideological differences between NK Theory and RBC Theory
 - □ DGE <u>methodology</u> is (virtually...) universally used in macro analysis

BUILDING BLOCKS OF MODERN MACRO THEORY

- Intertemporal consumption-leisure framework the foundation of modern macroeconomic theory
 - □ Referred to as Dynamic General Equilibrium (DGE) Theory
 - □ Both Real Business Cycle (RBC) theory and New Keynesian (NK) theory (the two dominant current schools of macroeconomic thinking)
- Power of DGE approach demonstrated by RBC theorists in early 1980's – idea of DGE theory has been adopted by nearly all other macro camps
 - Even though important ideological differences between NK Theory and RBC Theory
 - □ DGE <u>methodology</u> is (virtually...) universally used in macro analysis
- ☐ Three seminal phases of the history of macroeconomic thought/practice
 - ☐ Measuring macroeconomic activity (1930's 1950)
 - ☐ Keynesian-inspired macroeconometric models (1950 1970's)
 - ☐ DGE methodology (1980's today)