MONETARY POLICY

APRIL 2, 2012

Introduction

IS MONETARY POLICY NEUTRAL?

- An enduring question in macroeconomics: does monetary policy have any important effects on the <u>real</u> (i.e, <u>real</u> GDP, consumption, etc) economy?
- <u>Definition</u>: Money (and hence monetary policy) is <u>neutral</u> if changes in the money supply (i.e., changes in monetary policy) have <u>no effect on the real economy</u>
 - Monetary policy is non-neutral if it does have effects on the real economy
- New Keynesian view: money is non-neutral (because prices are rigid/sticky, sometimes for long periods of time)
- RBC view: money is neutral (because prices are not rigid/sticky in any important way)

The Evolution of Macroeconomics

WHERE IS MACROECONOMICS TODAY?

- Keynesian Macroeconomics
 - Ideology: Price rigidities/"sticky prices"
 - Policy stance: policy (fiscal and monetary) of crucial importance for macroeconomic performance
 - Methodology: econometric/statistical modeling
- □ RBC Macroeconomics
 - Ideology: Prices are not rigid or "sticky"
 - Policy stance: policy (neither fiscal nor monetary) not very important for macroeconomic performance
 - Methodology: dynamic general equilibrium modeling
- □ New Keynesian Macroeconomics Empirical evidence still EXTREMELY mixed
 - Ideology: Price rigidities/"sticky prices"
 - Policy stance: policy (fiscal and monetary) of crucial importance for macroeconomic performance
 The enduring imprint of the RBC revolution
 - Methodology: dynamic general equilibrium modeling
- A central issue in macroeconomics: monetary neutrality?
 - Does monetary policy have long-lasting effects on real economy?

April 2, 2012

Introduction

IS MONETARY POLICY NEUTRAL?

- An enduring question in macroeconomics: does monetary policy have any important effects on the <u>real</u> (i.e, <u>real</u> GDP, consumption, etc) economy?
- <u>Definition</u>: Money (and hence monetary policy) is <u>neutral</u> if changes in the money supply (i.e., changes in monetary policy) have <u>no effect on the real economy</u>
 - Monetary policy is non-neutral if it does have effects on the real economy
- New Keynesian view: money is non-neutral (because prices are rigid/sticky, sometimes for long periods of time)
- RBC view: money is neutral (because prices are not rigid/sticky in any important way)
- To seriously consider neutrality issue, need to finally explicitly think about money and monetary policy
 - ☐ It's only been in the background of the analysis so far...

THE ROLES OF MONEY

- The roles played by money
 - Medium of exchange
 - ☐ Eases double-coincidence of wants problem
 - □ Unit of account
 - ☐ A common "language" for all prices to be quoted in
 - ☐ Store of value
 - ☐ Bananas will perish in short amount of time, dollar bills won't

April 2, 2012

Macro Fundamentals

THE ROLES OF MONEY

- ☐ The roles played by money
 - Medium of exchange
 - ☐ Eases double-coincidence of wants problem
 - □ Unit of account
 - ☐ A common "language" for all prices to be quoted in
 - Store of value
 - Bananas will perish in short amount of time, dollar bills won't
- How to conceptually "model" money a surprisingly hard problem
 - ☐ Much more difficult than, e.g., "consumption-leisure framework" or "consumption-savings framework"
 - ☐ How to formally (mathematically) represent these roles of money?
- □ A shortcut: suppose money directly yields utility
 - Period-*t* utility function
 - $u\left(c_t, \frac{M_t}{P_t}\right)$
 - Money-in-the-utility-function (MIU) formulation
 - IMPORTANT: It's not M_t in the utility function, but rather M_t/P_t

April 2, 2012

6

REAL MONEY BALANCES

- \Box M_t/P_t a key variable for macroeconomic analysis
- ☐ Unit Analysis (i.e., analyze algebraic units of variables)
 - \Box Units(M_t) = \$
 - □ Units(P_t) = \$/unit of consumption
 - Units(M_t/P_t) = $\frac{\$}{\text{unit of consumption}} = \$ \cdot \frac{\text{unit of consumption}}{\$}$

= unit of consumption

April 2, 2012

Macro Fundamentals

8

REAL MONEY BALANCES

- \Box M_t/P_t a key variable for macroeconomic analysis
- ☐ Unit Analysis (i.e., analyze algebraic units of variables)
 - \Box Units(M_t) = \$
 - □ Units(P_t) = \$/unit of consumption
 - Units(M_t/P_t) = $\frac{\$}{\text{unit of consumption}} = \$ \cdot \frac{\text{unit of consumption}}{\$}$

= unit of consumption

- ☐ Utility (composite of medium of exchange, unit of account, store of value) depends on *real* money (*M/P*), not nominal money (*M*)
 - ☐ Measures the purchasing power of (nominal) money holdings...
 - □ ...which is presumably what people most care about
- \square M_t and P_t can potentially grow at different rates
 - □ In which case real M_t/P_t fluctuate from one period to the next

MONEY MARKETS AND BOND MARKETS

- A prerequisite for analyzing monetary policy: understanding bonds and bond markets
- Bond markets and money markets tightly linked to each other
- What is a "bond?"
 - Simply put, a debt obligation (i.e., borrow funds today, repay at some future date with interest)

April 2, 2012

Macro Fundamentals

MONEY MARKETS AND BOND MARKETS

- A prerequisite for analyzing monetary policy: understanding bonds and bond markets
- Bond markets and money markets tightly linked to each other
- What is a "bond?"
 - Simply put, a debt obligation (i.e., borrow funds today, repay at some future date with interest)
 - Types of bonds

Conventional monetary policy through short-term bonds

- 30-day, 60-day, 90-day Federal government bonds
- 1-year Federal government bonds 2-year Federal government bonds
- \Box
- 5-year Federal government bonds 10-year Federal government bonds
- 30-year Federal government bonds
- Foreign sovereign government bonds of various maturities
- State and local government bonds of various maturities
- Corporate bonds of various maturities
- Coupon bonds pay something back ("coupon payments") every so often until the final date of maturity
 - Zero-coupon bonds only pay back at final date of maturity

April 2, 2012

10

	Macro Fundamentals
Boı	ND MARKETS
	A prerequisite for analyzing monetary policy: understanding bonds and bond markets
	Bond markets and money markets tightly linked to each other
	What is a "bond?" Simply put, a debt obligation (i.e., borrow funds today, repay at some future date with interest)
	Simplify by supposing that all bonds are one-period zero-coupon government bonds – i.e., short-term bonds
	□ Traditional simplification for analysis of monetary policy □ Understanding how short-term bond is priced
et-pricing	Key to understanding how all honds are priced
ckground ain	☐ Key to understanding how all sorts of financial assets are priced
	 □ Also sheds light on the pricing kernel (recall from Chapter 8) □ Stock prices linked to bond prices
April	2, 2012

Macro Fundamentals **BOND MARKETS** A prerequisite for analyzing monetary policy: understanding bonds and bond markets Bond markets and money markets tightly linked to each other What is a "bond?" Simply put, a debt obligation (i.e., borrow funds today, repay at some future date with interest) Simplify by supposing that all bonds are one-period zero-coupon government bonds - i.e., short-term bonds Traditional simplification for analysis of monetary policy In normal Understanding how short-term bond is priced times. Decoupling amidst Key to understanding how all bonds are priced Key to understanding how all sorts of financial assets are priced Short-term government bond a "riskless" debt instrument U.S. government has never defaulted on (nominal...) bond payment But excess inflation a backdoor way of "defaulting". (Important concept(s) for financial accelerator framework later....) April 2, 2012 12

BOND MARKETS

☐ Key relationship between price of a bond and nominal interest rate

Bonds priced according to present-value of future payoff

 $P_t^b = \frac{FV_{t+1}}{1+i_t}$

■ Notation

 \Box P_t^b : nominal price of a one-period bond

 \Box i_t : nominal interest rate between period t and period t+1

 \Box FV_{t+1}: face-value of bond (i.e., how much will be repaid in t+1)

In reality, \underline{many} different values of FV (\$100, \$1000, \$10,000, etc...)

April 2, 2012

13

Macro Fundamentals

BOND MARKETS

☐ Key relationship between price of a bond and nominal interest rate

Bonds priced according to present-value of future payoff

$$P_t^b = \frac{1}{1+i}$$

IMPORTANT: inverse

 $i_t = \frac{1}{P_t^b} - 1$

■ Notation

 \Box P_t^b : nominal price of a one-period bond

 \Box i_t : nominal interest rate between period t and period t+1

 \Box FV_{t+1} : face-value of bond (i.e., how much will be repaid in t+1)

In reality, \underline{many} different values of FV (\$100, \$1000, \$10,000, etc...)

Simplify and assume FV = 1 (will get main ideas across)

☐ Inverse relationship between price of a bond and nominal interest rate – critical

☐ Short-term bond markets are/have been the conventional channel through which Federal Reserve conducts monetary policy

April 2, 2012

14

Conventional Monetary Policy

MONEY MARKETS AND BOND MARKETS

□ Short-term bond markets and money markets tightly linked to each other

- \Box i can be thought of in two (mirror-image) ways
 - ☐ The interest payoff of a bond
 - Opportunity cost of holding money
 - I Each unit of wealth held as a dollar is a unit of wealth *not* held as a bond, which entails the loss of chance to earn interest (i.e., opportunity cost)
 - i is interpreted as "the price of money"

April 2, 2012 15

Conventional Monetary Policy

MONEY MARKETS AND BOND MARKETS

□ Short-term bond markets and money markets tightly linked to each other

- \Box i can be thought of in two (mirror-image) ways
 - The interest payoff of a bond
 - Opportunity cost of holding money
 - Each unit of wealth held as a dollar is a unit of wealth not held as a bond, which entails the loss of chance to earn interest (i.e., opportunity cost)
 - *i* is interpreted as "the price of money"
- □ Conventional monetary policy
 - Basic macro: Fed open-market operations conducted via short-term bond markets, so Fed operations do affect bond supply

Conventional Monetary Policy

MONEY MARKETS AND BOND MARKETS

Basic macro: open-market operations conducted via short-term bond markets

Expansionary monetary policy by Fed

- Fed buys short bonds from financial sector, reducing open-market supply...
 - ...by printing new money, increasing its supply in money market...
- ...which causes short-term i to decrease

April 2, 2012

Conventional Monetary Policy

MONEY MARKETS AND BOND MARKETS

Basic macro: open-market operations conducted via short-term bond

Expansionary monetary policy by Fed

- Fed buys short bonds from financial sector, reducing open-market supply...
- ...by printing new money, increasing its supply in money market...
 - ...which causes short-term i to decrease

Contractionary monetary policy by Fed

- Fed sells short bonds to financial sector, increasing open-market supply ...
- ...in exchange for money, decreasing its supply in money market... П
 - ...which causes short-term i to increase

Beyond Conventional Monetary Policy

A More Expansive View of Monetary Policy?

- Conventional monetary policy: interest-rate targeting via open-market operations
- What else is monetary policy and how else can it be conducted?
 - □ Unconventional policy measures an important issue the past few years
- $f \square$ Allow Fed to purchase other assets, not just short-term U.S Treasuries
 - $\hfill \square$ i.e., let it conduct other market operations besides only conventional short-bond open-market operations
- ☐ Allow Fed to issue its own bonds (legal issues unclear)

April 2, 2012

Beyond Conventional Monetary Policy

A More Expansive View of Monetary Policy?

- Conventional monetary policy: interest-rate targeting via open-market operations
- ☐ What else is monetary policy and how else can it be conducted?
 - Unconventional policy measures an important issue the past few years
- ☐ Allow Fed to purchase other assets, not just short-term U.S Treasuries
 - i.e., let it conduct other market operations besides only conventional short-bond open-market operations
- lacktriangledown Allow Fed to issue its own bonds (legal issues unclear)
- ☐ Bail out/lend to banks and firms in times of distress ("lender of last resort")
- "Communicate" with the public and markets about "how the economy is doing"
 - □ A confidence-management role
 - Bernanke has given quarterly press briefings since April
- □ Current focus on quantitative easing/credit easing is there a QE3 coming?
 - Purchase assets not conventionally used in policy implementation (term derives from Friedman's "quantity of money" theories)

MONETARY POLICY IN THE INFINITE-PERIOD ECONOMY

APRIL 2, 2012

Introduction

BASICS

- ☐ Extend our infinite-period framework
 - ☐ Introduce money and bonds into the Chapter 8 framework
 - So now three types of assets (stocks, short-term bonds, money) for representative consumer to use for savings purposes
- ☐ Will allow us to think further about what the "pricing kernel" is
- Will allow us to think about connection between bond prices and stock prices
- Will allow us to think about issue of monetary neutrality (the main issue in the RBC vs. New Keynesian debate)
 - i.e., does money (and thus monetary policy) have important consequences for <u>real</u> (i.e., consumption and real GDP) variables?
- □ Index time periods by arbitrary indexes t, t+1, t+2, etc.
 - Important: all of our analysis will be conducted from the perspective of the very beginning of period t...
- Sequential Lagrangian analysis (with money in the utility function)

Model Structure

28

BUDGET CONSTRAINT(S)

- □ Extend budget constraints from Chapter 8 stock-pricing framework to now include three distinct types of assets: stocks, money, and short-term bonds
- Need infinite budget constraints to describe economic opportunities and possibilities
 - One for each period
 - □ In period t

$$\underbrace{P_{t}c_{t} + P_{t}^{b}B_{t} + M_{t} + S_{t}a_{t}}_{} = \underbrace{Y_{t} + M_{t-1} + B_{t-1}}_{} + S_{t}a_{t-1} + D_{t}a_{t-1}$$

Total outlays in period t: period-t consumption + stocks to carry into period t+1 + money to carry into period t+1 + bond purchases

<u>Total income in period t</u>: period-t Y + income from stock-holdings carried into period t (has value S, and pays dividend D_t) + money-holdings carried into period t + bond-holdings carried into period t (each unit repays FV = 1)

Model Structure

BUDGET CONSTRAINT(S)

- Extend budget constraints from Chapter 8 stock-pricing framework to now include three distinct types of assets: stocks, money, and short-term bonds
- Need infinite budget constraints to describe economic opportunities and possibilities
 - One for each period
 - In period t

$$P_t c_t + P_t^b B_t + M_t + S_t a_t = Y_t + M_{t-1} + B_{t-1} + S_t a_{t-1} + D_t a_{t-1}$$

 $P_{t+1}c_{t+1} + P_{t+1}^b B_{t+1} + M_{t+1} + S_{t+1}a_{t+1} = Y_{t+1} + M_t + B_t + S_{t+1}a_t + D_{t+1}a_t$

<u>Total outlays in period t:</u> period-t consumption + stocks to *carry into period t+1* + money to *carry into period t+1* + bond purchases

<u>Total income in period t</u>: period-t Y + income from stock-holdings carried into period t (has value S, and pays dividend D_t) + money-holdings carried into period t + bond-holdings carried into period t (each unit repays FV = 1)

In period t+1

<u>Total outlays in period t+1:</u> period-t+1 consumption + stocks to carry into period t+2 + money to carry into period t+2 + bond purchases

Total income in period t+1: period-t+1 Y + income from stock-holdings carried into period t+1 (has value S_{t+1} and pays dividend D_{t+1}) + money-holdings carried into period t+1 + bond-holdings carried into period t+1 (each unit repays FV=1)

And identical-looking budget constraints in period t+2, t+3, t+4, etc.

April 2, 2012

Infinite-Period Model: Sequential Formulation

LAGRANGE ANALYSIS: SEQUENTIAL APPROACH

Step 1: Construct Lagrange function (starting from t)

 $u(c_t, M_t/P_t) + \beta u(c_{t+1}, M_{t+1}/P_{t+1}) + \beta^2 u(c_{t+2}, M_{t+2}/P_{t+2}) + \dots$

First the lifetime utility function....(no different than Chapter 8, except now with MIU)

30

LAGRANGE ANALYSIS: SEQUENTIAL APPROACH

Step 1: Construct Lagrange function (starting from t)

April 2, 2012

Infinite-Period Model: Sequential Formulation

LAGRANGE ANALYSIS: SEQUENTIAL APPROACH

Step 1: Construct Lagrange function (starting from t)

$$u(c_t, M_t/P_t) + \beta u(c_{t+1}, M_{t+1}/P_{t+1}) + \beta^2 u(c_{t+2}, M_{t+2}/P_{t+2}) + \dots \\ + \lambda_t \Big[Y_t + (S_t + D_t) a_{t-1} + M_{t-1} + B_{t-1} - P_t c_t - S_t a_t - M_t - P_t^b B_t \Big]^{\frac{1}{b}} \\ + \beta \lambda_{t+1} \Big[Y_{t+1} + (S_{t+1} + D_{t+1}) a_t + M_t + B_t - P_{t+1} c_{t+1} - S_{t+1} a_{t+1} - M_{t+1} - P_{t+1}^b B_{t+1} \Big] \\ + \beta^2 \lambda_{t+2} \Big[Y_{t+2} + (S_{t+2} + D_{t+2}) a_{t+1} + M_{t+1} + B_{t+1} - P_{t+2} c_{t+2} - S_{t+2} a_{t+2} - M_{t+2} - P_{t+2}^b B_{t+2} \Big] \\ + \beta^3 \lambda_{t+3} \Big[Y_{t+3} + (S_{t+3} + D_{t+3}) a_{t+2} + M_{t+2} + B_{t+2} - P_{t+3} c_{t+3} - S_{t+3} a_{t+3} - M_{t+3} - P_{t+3}^b B_{t+3} \Big] \\ + M_{t+2} \Big[M_{t+3} + M_{t+3} + M_{t+2} + M_{t+2} + M_{t+2} + B_{t+2} - P_{t+3} c_{t+3} - M_{t+3} - P_{t+3}^b B_{t+3} \Big] \\ + M_{t+3} \Big[M_{t+3} + M_{t+3} + M_{t+3} + M_{t+2} + M_{t+2} + M_{t+2} + B_{t+2} - P_{t+3} c_{t+3} - M_{t+3} - P_{t+3}^b B_{t+3} \Big] \\ + M_{t+3} \Big[M_{t+3} + M_{t+3} + M_{t+3} + M_{t+2} + M_{t+2} + M_{t+2} + M_{t+2} - P_{t+3} c_{t+3} - M_{t+3} - P_{t+3}^b B_{t+3} \Big] \\ + M_{t+4} +$$

Finance Fundamentals

ASSET PRICING REVISITED

$$\begin{array}{ll} u_1(c_i,M_i/P_i) - \lambda_i P_i = 0 & \text{Equation 1} \\ -\lambda_i S_i + \beta \lambda_{i+1} (S_{i+1} + D_{i+1}) = 0 & \text{Equation 2} \\ -\lambda_i P_i^b + \beta \lambda_{i+1} = 0 & \text{Equation 3} \\ \frac{u_2(c_i,M_i/P_i)}{P_i} - \lambda_i + \beta \lambda_{i+1} = 0 & \text{Equation 4} \end{array}$$

- □ Equation 2 → $S_{t} = \left(\frac{\beta \lambda_{t+1}}{\lambda_{t}}\right) (S_{t+1} + D_{t+1})$ STOCK-PRICING EQUATION

 Period-t stock = Pricing x Future kernel x return
- Much of finance theory concerned with pricing kernel
 - □ Theoretical properties
 - □ Empirical models of kernels
- Pricing kernel where macro theory and finance theory intersect
 - <u>Lagrange multipliers</u> where macro and finance intersect an idea that will be important in the financial accelerator framework

April 2, 2012 33

Finance Fundamentals

ASSET PRICING REVISITED

$$\begin{array}{ll} u_1(c_i,M_i/P_i) - \lambda_i P_i = 0 & \text{Equation 1} \\ -\lambda_i S_i + \beta \lambda_{i+1}(S_{i+1} + D_{i+1}) = 0 & \text{Equation 2} \\ -\lambda_i P_i^b + \beta \lambda_{i+1} = 0 & \text{Equation 3} \\ \frac{u_2(c_i,M_i/P_i)}{P_i} - \lambda_i + \beta \lambda_{i+1} = 0 & \text{Equation 4} \end{array}$$

 $\Box \qquad \text{Equation 2} \Rightarrow \qquad S_t = \left(\frac{\beta \lambda_{t+1}}{\lambda_t}\right) (S_{t+1} + D_{t+1}) \qquad \boxed{\text{STOCK-PRICING EQUATION}}$

Period-t stock = Pricing price x Future return

- □ Price of short-term bond <u>is</u> the pricing kernel
 - ☐ Stock prices and bond prices are connected
 - Most (all?) asset prices fundamentally connected to short bond prices
 - Finance: pricing kernel reflects the price/return of the least risky asset in the economy – U.S. Treasury short-term bonds

Finance Fundamentals

ASSET PRICING REVISITED

$$\begin{array}{ll} u_1(c_i,M_i/P_i) - \lambda_i P_i = 0 & \text{Equation 1} \\ -\lambda_i S_i + \beta \lambda_{i+1} (S_{i+1} + D_{i+1}) = 0 & \text{Equation 2} \\ -\lambda_i P_i^b + \beta \lambda_{i+1} = 0 & \text{Equation 3} \\ \frac{u_2(c_i,M_i/P_i)}{P_i} - \lambda_i + \beta \lambda_{i+1} = 0 & \text{Equation 4} \end{array}$$

- $S_{t} = \left(\frac{\beta \lambda_{t+1}}{\lambda_{t}}\right) (S_{t+1} + D_{t+1})$ STOCK-PRICING EQUATIONPeriod-t stock = Pricing x Future return Equation 2 →
- $P_{t}^{b} = \frac{\beta \lambda_{t+1}}{\lambda_{t}}$ $P_{t}^{b} = \frac{1}{1+i_{t}}$ Equation 3 → BOND-PRICING EQUATION
- \rightarrow can express pricing kernel as $\frac{\beta \lambda_{i+1}}{\lambda_i} = \frac{1}{1+i_i}$

April 2, 2012

Macro Fundamentals

FISHER EQUATION

Recall

$$\begin{array}{ll} u_{1}(c_{t},M_{t}/P_{t})-\lambda_{t}P_{t}=0 & \text{Equation 1} \\ -\lambda_{t}S_{t}+\beta\lambda_{t+1}(S_{t+1}+D_{t+1})=0 & \text{Equation 2} \\ -\lambda_{t}P_{t}^{b}+\beta\lambda_{t+1}=0 & \text{Equation 3} \\ \frac{u_{2}(c_{t},M_{t}/P_{t})}{P_{t}}-\lambda_{t}+\beta\lambda_{t+1}=0 & \text{Equation 4} \\ \end{array}$$
 Combining stock-pricing equation with bond-pricing equation \Rightarrow

$$1 + r_{\scriptscriptstyle t} = \frac{1 + i_{\scriptscriptstyle t}}{1 + \pi_{\scriptscriptstyle t+1}} \qquad \qquad \text{fisher equation}$$

FISHER EQUATION

$$\begin{split} &u_1(c_i,M_i/P_i)-\lambda_iP_i=0 & \text{Equation 1} \\ &-\lambda_iS_i+\beta\lambda_{i+1}(S_{i+1}+D_{i+1})=0 & \text{Equation 2} \\ &-\lambda_iP_i^b+\beta\lambda_{i+1}=0 & \text{Equation 3} \\ &\frac{u_2(c_i,M_i/P_i)}{P_i}-\lambda_i+\beta\lambda_{i+1}=0 & \text{Equation 4} \end{split}$$

 \Box Combining stock-pricing equation with bond-pricing equation \Rightarrow

$$1 + r_t = \frac{1 + i_t}{1 + \pi}$$
 Fisher equation

- Fisher equation a relationship between returns on nominal bonds and returns on stock (finance theory: "no-arbitrage" condition)
- ☐ (See derivation in Chapter 14)
- □ Bonds: "riskless asset"
- ☐ Stock: "risky asset"
- ☐ Fisher equation was a building block of two-period model
- □ Recall approximate form: $r \approx i \pi$

April 2, 2012 3

Money Demand

CONSUMPTION-MONEY OPTIMALITY CONDITION

Begin with equation 4: $\frac{u_2(c_i, M_i/P_i)}{P_i} - \lambda_i = -\beta \lambda_{t+1}$ $\frac{u_2(c_i, M_i/P_i)}{P_i} - \lambda_i = -\lambda_i P_i^b \text{ from equation 3}$ $\frac{u_2(c_i, M_i/P_i)}{P_i} - \lambda_i = -\lambda_i P_i^b$ $\frac{u_2(c_i, M_i/P_i)}{\lambda_i P_i} - 1 = -P_i^b$ $\frac{u_2(c_i, M_i/P_i)}{u_1(c_i, M_i/P_i)} = 1 - P_i^b$ $\frac{u_2(c_i, M_i/P_i)}{u_1(c_i, M_i/P_i)} = 1 - P_i^b$ $\frac{u_2(c_i, M_i/P_i)}{u_1(c_i, M_i/P_i)} = \frac{i_i}{1 + i_i}$ CONSUMPTION-MONEY OPTIMALITY CONDITION $\frac{u_2(c_i, M_i/P_i)}{u_1(c_i, M_i/P_i)} = \frac{i_i}{1 + i_i}$ Price ratio (between consumption and money)

Money Demand

MONEY DEMAND

- Consumption-money optimality condition the foundation of money demand function
- **Example:** suppose $u\left(c_i, \frac{M_i}{P_i}\right) = \ln c_i + \ln \left(\frac{M_i}{P_i}\right)$
- Thus, $u_1\left(c_i, \frac{M_t}{P_t}\right) = \frac{1}{c_i}$ and $u_2\left(c_i, \frac{M_t}{P_t}\right) = \frac{1}{M_t/P_t}$ (no chain rule this time...)

April 2, 2012 39

Money Demand

MONEY DEMAND

- Consumption-money optimality condition the foundation of money demand function
- **Example:** suppose $u\left(c_i, \frac{M_i}{P_i}\right) = \ln c_i + \ln\left(\frac{M_i}{P_i}\right)$
- Thus, $u_1\left(c_i, \frac{M_i}{P_i}\right) = \frac{1}{c_i}$ and $u_2\left(c_i, \frac{M_i}{P_i}\right) = \frac{1}{M_i/P_i}$ (no chain rule this time...)
- Consumption-money optimality condition (for this utility function...) is

- Will use this money demand function to analyze
 - ☐ The monetary neutrality debate
 - ☐ The long-run (aka steady-state) connection between monetary policy and inflation

MONETARY POLICY IN THE INFINITE-PERIOD ECONOMY: SHORT-RUN EFFECTS

APRIL 2, 2012

Monetary Policy Analysis: Short-Run Effects

IS MONETARY POLICY NEUTRAL?

- An enduring question in macroeconomics: does monetary policy have any important effects on the <u>real</u> (i.e, <u>real</u> GDP, consumption, etc) economy?
- <u>Definition</u>: Money (and hence monetary policy) is neutral if changes in the money supply (i.e., changes in monetary policy) have no effect on the real economy
 - Monetary policy is non-neutral if it does have effects on the real economy
- □ New Keynesian view: money is non-neutral (because prices are rigid/sticky, sometimes for long periods of time)
- RBC view: money is neutral (because prices are not rigid/sticky in any important way)
- MIU framework allows us to consider how/why monetary policy is or is not neutral

Monetary Policy Analysis: Short-Run Effects

MONEY DEMAND

$\frac{u_2(c_r, M_t/P_t)}{u_1(c_r, M_t/P_t)} = \frac{i_r}{1+i_t}$ $\frac{1}{1+i_t}$ MRS (between consumption and money) primality condition and money demand function are the same thing, just viewed from different points or view $\frac{u_1(c_r, M_t/P_t)}{u_1(c_r, M_t/P_t)} = \frac{i_r}{1+i_t}$ Using utility function $u\left(c_r, \frac{M_t}{P_t}\right) = \ln c_r + \ln\left(\frac{M_t}{P_t}\right)$ generate money demand function where $u\left(c_r, \frac{M_t}{P_t}\right) = \frac{1}{1+i_t}$ $\frac{u_1(c_r, M_t/P_t)}{u_1(c_r, M_t/P_t)} = \frac{1}{1+i_t}$ $\frac{u_2(c_r, M_t/P_t)}{u_1(c_r, M_t/P_t)} = \frac{i_r}{1+i_t}$ $\frac{u_1(c_r, M_t/P_t)}{u_1(c_r, M_t/P_t)} = \frac{i_r}{1+i_t}$ $\frac{u_2(c_r, M_t/P_t)}{u_1(c_r, M_t/P_t)} = \frac{i_r}{1+i_t}$ $\frac{u_1(c_r, M_t/P_t)}{u_1(c_r, M_t/P_t)} = \frac{i_r}{1+i_t}$ $\frac{u_2(c_r, M_t/P_t)}{u_1(c_r, M_t/P_t)} = \frac{i_r}{1+i_t}$ $\frac{u_1(c_r, M_t/P_t)}{u_1(c_r, M_t/P_t)} = \frac{i_r}{1+i_t}$ $\frac{u_2(c_r, M_t/P_t)}{u_1(c_r, M_t/P_t)} = \frac{i_r}{1+i_t}$ $\frac{u_2(c_r, M_t/P_t)}{u_1(c_r, M_t/P_t)} = \frac{i_r}{1+i_t}$ $\frac{u_1(c_r, M_t/P_t)}{u_1(c_r, M_t/P_t)} = \frac{i_r}{1+i_t}$ $\frac{u_2(c_r, M_t/P_t)}{u_1(c_r, M_t/P_t)} = \frac{i_r}{1+i_t}$ $\frac{u_1(c_r, M_t/P_t)}{u_1(c_r, M_t/P_t)} = \frac{i_r}{1+i_t}$

- ☐ Use money demand function to illustrate effects of money (monetary policy) shocks
- Gets at core of neutrality debate
- ☐ Let's be even more precise about the timing of events...

April 2, 2012

Monetary Policy Analysis: Short-Run Effects

MONETARY NEUTRALITY DEBATE

 \Box Precise timing of events within period t

- $\begin{tabular}{lll} \hline \square & Fed sets "supply of M_t'' after consumers makes their choices of c_t and "demand for M_t'' (and other choices, too...) \\ \end{tabular}$
 - □ If actual M_t differs from planned M_{tt} money shock has occurred

Monetary Policy Analysis: Short-Run Effects

MONETARY NEUTRALITY DEBATE

 \Box Precise timing of events within period t

- Fed sets "supply of M_t " after consumers makes their choices of c_t and "demand for M_t " (and other choices, too...)
 - □ If actual M_t differs from planned M_{tr} money shock has occurred
- Question: which adjusts $(P_t \text{ or } c_t)$ to ensure consumption-money optimality condition holds? (simplify by assuming i_t doesn't adjust)

$$\frac{M_t}{P_t} = c_t \cdot \left(\frac{1 + i_t}{i_t}\right)$$

April 2, 2012 45

Monetary Policy Analysis: Short-Run Effects

MONETARY NEUTRALITY DEBATE

Question: which adjusts $(P_t \text{ or } c_t)$ to ensure consumption-money optimality condition holds? (simplify by assuming i_t doesn't adjust)

$$\frac{M_{t}}{P_{t}} = c_{t} \cdot \left(\frac{1 + i_{t}}{i_{t}}\right)$$

□ Keynesian/New Keynesian view

- \Box P_t cannot adjust because prices are sticky
- \Box A positive (negative) money shock leads to a rise (fall) in c_t
- ☐ Money (and hence monetary policy) is not neutral

Monetary Policy Analysis: Short-Run Effects

MONETARY NEUTRALITY DEBATE

Question: which adjusts $(P_t \text{ or } c_t)$ to ensure consumption-money optimality condition holds? (simplify by assuming i_t doesn't adjust)

$$\frac{M_t}{P_t} = c_t \cdot \left(\frac{1 + i_t}{i_t}\right)$$

- □ Keynesian/New Keynesian view
 - P_t cannot adjust because prices are sticky
 - \Box (Prices will adjust <u>later</u> (i.e, in period t+1 or later), just not in period t)
 - \Box A positive (negative) money shock leads to a rise (fall) in c_t
 - Money (and hence monetary policy) is not neutral
- □ RBC view
 - \square P_t can adjust because prices are not sticky
 - \square No reason for c_t to adjust (they do reflect optimal choices, after all...)
 - \Box A positive (negative) money shock leads to no change (no change) in c_t
 - Money (and hence monetary policy) is neutral
- Empirical evidence for "how sticky" are prices is very mixed...

April 2, 2012 4

Monetary Policy Analysis: Short-Run Effects

MONETARY NEUTRALITY DEBATE: EXAMPLE

- □ Assume $i_t = 0.125$ is fixed
- □ Consumers' "planned" choices are $c_t = 2$ and $M_t = 180$
- □ This plan was made with $P_t = 10$ in mind
- Fed sets actual $M_t = 270$ (a positive money shock because actual M_t greater than planned M_t)
- □ Keynesian/New Keynesian view

 - c_t will rise (to c_t = 3) to make consumption-money optimality condition hold
 - Monetary policy is non-neutral

 $\frac{M_t}{P_t} = c_t \cdot \left(\frac{1 + i_t}{i_t}\right)$

- □ RBC view
 - Consumers' plan of $c_t = 2$ is what the economy really wants
 - \Box P_t can fully and quickly adjust to accommodate this $\Rightarrow P_t = 15$
 - Monetary policy is neutral; only effect of monetary policy is on inflation

MONETARY POLICY IN THE INFINITE-PERIOD ECONOMY: LONG-RUN EFFECTS

APRIL 2, 2012

Monetary Policy Analysis: Long-Run Effects

MONEY AND INFLATION IN THE LONG-RUN

- Question: what determines inflation in the long run (i.e., in steady-state)?
 - \Box Use both period-(t-1) and period-t money demand functions to analyze

Monetary Policy Analysis: Long-Run Effects

MONEY AND INFLATION IN THE LONG-RUN

- Question: what determines inflation in the long run (i.e., in steady-state)?
 - \Box Use both period-(t-1) and period-t money demand functions to analyze

April 2, 2012 5

Monetary Policy Analysis: Long-Run Effects

MONEY AND INFLATION IN THE LONG-RUN

- Question: what determines inflation in the long run (i.e., in steady-state)?
 - \Box Use both period-(t-1) and period-t money demand functions to analyze

MONETARISM

 $\mu = \pi$

IN LONG RUN, RATE OF MONEY
GROWTH = RATE OF INFLATION

- ☐ In steady state, inflation determined solely by how quickly central bank (Fed) expands (or shrinks) the nominal money supply
- ☐ This relationship the basis for the monetarist school of thought
 - Milton Friedman's famous dictum: "Inflation is always and everywhere a monetary phenomenon"
 - Policy translation: "A central bank should not worry about/try to control anything other than how quickly the money supply in the economy is growing. Keeping money growth under control will keep inflation under control."

April 2, 2012

57

Monetary Policy Analysis: Money and Inflation

MONETARISM

 $\mu = \pi$

IN LONG RUN, RATE OF MONEY GROWTH = RATE OF INFLATION

- ☐ In steady state, inflation determined solely by how quickly central bank (Fed) expands (or shrinks) the nominal money supply
- ☐ This relationship the basis for the monetarist school of thought
 - ☐ Milton Friedman's famous dictum: "Inflation is always and everywhere a monetary phenomenon"
 - Policy translation: "A central bank should not worry about/try to control anything other than how quickly the money supply in the economy is growing. Keeping money growth under control will keep inflation under control."
 - □ Rose to prominence in mid- and late 1970's (during macro crises)
 - □ Largest policy influence in U.K., short-lived policy influence in U.S.
 - Largely died out as basis for serious policy advice by mid-1980's
- □ Nevertheless still viewed as fundamental "law" of macroeconomics
 - □ A concern today: Fed's "easy monetary policy" (read: Fed has increased money supply very rapidly) will generate a burst of inflation

April 2, 2012

58

Monetary Policy: Wrapup

MONETARY POLICY

- ☐ In short-run, do changes in monetary policy have effects on consumption and real GDP?
 - ☐ Keynesian/New Keynesian view: yes because prices are sticky
 - ☐ RBC view: no because prices are not sticky
- ☐ In long-run, changes in money growth rate
 - Only have effects on inflation
 - □ Have no effects on consumption and real GDP

April 2, 2012 5

Monetary Policy: Wrapup

MONETARY POLICY

- In short-run, do changes in monetary policy have effects on consumption and real GDP?
 - ☐ Keynesian/New Keynesian view: yes because prices are sticky
 - RBC view: no because prices are not sticky
- ☐ In long-run, changes in money growth rate
 - Only have effects on inflation
 - Have no effects on consumption and real GDP
- $\begin{tabular}{ll} \square & Competing principles/theories influence policy-makers' decisions \\ \end{tabular}$
- □ Basic models are guideposts for policy debates
- □ Actual policy-making quite messy
 - □ Requires lot of judgment
 - Requires hope/belief that basic models are at least somewhat useful guides to thinking
- Next: interactions between monetary policy and fiscal policy (Chapter 15)