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1.  Stock, Bonds, “Bills,” and the Financial Accelerator.  In this problem, you will study an 
enriched version of the accelerator framework we studied in class.  As in our basic analysis, we 
continue to use the two-period theory of firm profit maximization as our vehicle for studying the 
effects of financial-market developments on macroeconomic activity.  However, rather than 
supposing it is just “stock” that is the financial asset at firms’ disposal for facilitating physical capital 
purchases, we will now suppose that both “stock” and “bonds” are at firms’ disposal for 
facilitating physical capital purchases. 
 
Before describing more precisely the analysis you are to conduct, a deeper understanding of “bond 
markets” is required.  In “normal economic conditions,” (i.e, in or near a “steady state,” in the sense 
we first discussed in Chapter 8), it is usually sufficient to think of all bonds of various maturity 
lengths in a highly simplified way:  by supposing that they are all simply one-period face-value = 1 
bonds with the same nominal interest rate.  Recall, in fact, that this is how our basic discussion of 
monetary policy proceeded.  In “unusual” (i.e., far away from steady state) financial market 
conditions, however, it can become important to distinguish between different types of bonds and 
hence different types of nominal interest rates on those bonds. 
 
You may have seen discussion in the press about central banks, such as the U.S. Federal Reserve, 
considering whether or not to “begin buying bonds” as a way of conducting policy.  Viewed 
through the standard lens of how to understand open-market operations, this discussion makes no 
sense because in the standard view, central banks already do buy (and sell) “bonds” as the 
mechanism by which they conduct open-market operations!   
 
A difference that becomes important to understand during unusual financial market conditions is 
that open-market operations are conducted using the shortest-maturity “bonds” that the 
Treasury sells, of duration one month or shorter.  In the lingo of finance, this type of “bond” is 
called a “Treasury bill.”  The term “Treasury bond” is usually used to refer to longer-maturity 
Treasury securities – those that have maturities of one, two, five, or more years.  These longer-
maturity Treasury “bonds” have typically not been assets that the Federal Reserve buys and sells 
as regular practice; buying such longer-maturity bonds is/has not been the usual way of 
conducting monetary policy. 
 
In the ensuing analysis, part of the goal will be to understand/explain why policy-makers are 
currently considering this option.  Before beginning this analysis, though, there is more to 
understand. 
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(continued) 
 
In private-market borrower/lender relationships, longer-maturity Treasury bonds (“bonds”) are 
typically allowed to be used just like stocks in financing firms’ physical capital purchases.1  We 
can capture this idea by enriching the financing constraint in our financial accelerator framework 
to read: 
 
 1 2 1 1 1 1 1( ) S B bP k k R S a R P B⋅ − = ⋅ ⋅ + ⋅ ⋅ . 
 
The left hand side of this richer financing constraint is the same as the left hand side of the financing 
constraint we considered in our basic theory (and the notation is identical, as well – refer to your 
notes for the notational definitions).   
 
The right hand side of the financing constraint is richer than in our basic theory, however.  The 
market value of “stock,” S1a1, still affects how much physical investment firms can do, scaled by the 
government regulation RS.  In addition, now the market value of a firm’s “bond-holdings” 
(which, again, means long-maturity government bonds) also affects how much physical 
investment firms can do, scaled by the government regulation RB.  The notation here is that B1 is a 
firm’s holdings of nominal bonds (“long-maturity”) at the end of period 1, and 1

bP  is the nominal 
price of that bond during period 1.  Note that RB and RS need not be equal to each other. 
 
In the context of the two-period framework, the firm’s two-period discounted profit function now 
reads: 
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The new notation compared to our study of the basic accelerator mechanism is the following:  B0 is 
the firm’s holdings of nominal bonds (which have face value = 1) at the start of period one, B1 is the 
firm’s holdings of nominal bonds (which have face value = 1) at the end of period one, and B2 is the 
firm’s holdings of nominal bonds (which have face value = 1) at the end of period two.   
 
Note that period-2 profits are being discounted by the nominal interest rate i:  in this problem, we 
will consider i to be the “Treasury bill” interest rate (as opposed to the “Treasury bond” interest rate).  
The Treasury-bill interest rate is the one the Federal Reserve usually (i.e., in “normal times”) 
controls.  We can define the nominal interest rate on Treasury bonds as 
 

1
1

1 11
1

BOND b
b BONDi P

P i
⎛ ⎞= − ⇔ =⎜ ⎟+⎝ ⎠

 

 
Thus, note that iBOND and i need not equal each other. 

                                                 
1 Whereas, for various institutional and regulatory reasons, very short-term Treasury assets (“T-bills”) are typically 
not allowed to be used in financing firms’ physical capital purchases. 
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(continued) 
 
The rest of the notation above is just as in our study of the basic financial accelerator framework.  
Finally, because the economy ends at the end of period 2, we can conclude (as usual) that k3 = 0, a2 = 
0, and B2 = 0. 
 
With this background in place, you are to analyze a number of issues. 
 
a. Using λ as your notation for the Lagrange multiplier on the financing constraint, construct the 

Lagrangian for the representative firm’s (two-period) profit-maximization problem. 
 
Solution:  The Lagrangian, which by now should be extremely straightforward to construct, is 
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b. Based on this Lagrangian, compute the first-order condition with respect to nominal bond 

holdings at the end of period 1 (i.e., compute the FOC with respect to B1).  (Note:  This FOC is 
critical for much of the analysis that follows, so you should make sure that your work here is 
absolutely correct.) 

 
Solution:  Based on Lagrangian above, the FOC with respect to B1 is  
 

 1 1
1 0

1
b B bP R P

i
λ− + + =

+
. 

 
c. Recall that in this enriched version of the accelerator framework, the nominal interest rate on 

“Treasury bills,” i, and the nominal interest rate on “Treasury bonds,” iBOND, are potentially 
different from each other.  If financing constraints do NOT at all affect firms’ investment in 
physical capital, how does iBOND compare to i?  Specifically, is iBOND equal to i, is iBOND smaller 
than i, is iBOND larger than i, or is it impossible to determine?  Be as thorough in your analysis and 
conclusions as possible (i.e., tell us as much about this issue as you can!).  Your analysis here 
should be based on the FOC on B1 computed in part b above.  (Hint:  if financing constraints 
“don’t matter,” what is the value of the Lagrange multiplier λ?) 

 
Solution:  As discussed in detail in class, financing constraints are said to “not matter” (in the 
context of the accelerator framework) when the value of the Lagrange multiplier is zero, λ = 0.  
Inserting this value for the multiplier in the FOC derived in part b, we have that 
 

 1
1

1
bP

i
=

+
. 

 
Keeping in mind that in this problem we are distinguishing between i and iBOND, this last expression 
can be written as 
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 1 1
1 1BONDi i

=
+ +

, 

 
from which it is obvious that i = iBOND.  Thus, in “normal economic conditions” (i.e., when λ = 0), the 
nominal interest rates on “Treasury bills” and “Treasury bonds” are exactly equal.  This analytical 
result in fact justifies the usual practice of treating all bonds as “the same” – in normal economic 
conditions, their interest rates are (roughly) equalized.  (Indeed, if we introduced even longer 
maturity bonds into our framework – two-period bonds, three-period bonds, five-period bonds, etc. – 
we would be led to same conclusion, that all of their interest rates are equal to each other, provided 
that financing constraints don’t affect macroeconomic outcomes – although “impatience” introduces 
another caveat into this, but we have ignored impatience issues in this problem.) 
 
d. If financing constraints DO affect firms’ investment in physical capital, how does iBOND compare 

to i?  Specifically, is iBOND equal to i, is iBOND smaller than i, is iBOND larger than i, or is it 
impossible to determine?  Furthermore, if possible, use your solution here as a basis for justifying 
whether or not it is appropriate in “normal economic conditions” to consider both “Treasury 
bills” and “Treasury bonds” as the “same” asset.    Be as thorough in your analysis and 
conclusions as possible.  Once again, your analysis here should be based on the FOC on B1 
computed in part b above.  (Note:  the government regulatory variables RS and RB are both 
strictly positive – that is, neither can be zero or less than zero). 

 
Solution: From the FOC on B1 computed in part b, and now without imposing λ = 0, we can perform 
the following algebraic rearrangements: 
 

1 1
1 0

1
b B bP R P

i
λ− + + =

+
 

1
1

1 1
1

b
B bP

i R P
λ ⎡ ⎤= − ⋅⎢ ⎥+⎣ ⎦

 

1

1 1 11
1b BP i R

λ
⎡ ⎤

= − ⋅⎢ ⎥+⎣ ⎦
 

1 11
1

BOND

B

i
i R

λ
⎡ ⎤+

= − ⋅⎢ ⎥+⎣ ⎦
 

1 (1 ) 1
1

BOND

B

i i
i R

λ
⎡ ⎤+ − +

= ⋅⎢ ⎥+⎣ ⎦
 

1
1

BOND

B

i i
i R

λ
⎡ ⎤−

= ⋅⎢ ⎥+⎣ ⎦
 

 
This final expression shows that, if financing constraints “matter” (which means that 0λ ≠ ), 
then clearly BONDi i≠ .  Without knowing more about “how” financial market conditions are 
affecting investment behavior – that is, whether financing conditions are “tight” or “loose” 
(which would govern the sign of the multiplier λ), it is impossible to say anything more about 
how the T-bill interest rate and the T-bond interest rate compared to each other.  But, regardless, 
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it is clear that it is not appropriate to consider the two interest rates as being identical in this 
case. 

 
 
The above analysis was framed in terms of nominal interest rates; the remainder of the analysis is 
framed in terms of real interest rates. 
 
e. By computing the first-order condition on firms’ stock-holdings at the end of period 1, a1, and 

following exactly the same algebra as presented in class, we can express the Lagrange multiplier 
λ as  

 

 1
1

STOCK

S

r r
r R

λ
⎡ ⎤−

= ⋅⎢ ⎥+⎣ ⎦
. (1.1) 

 
Use the first-order condition on B1 you computed in part b above to derive an analogous 
expression for λ except in terms of the real interest rate on bonds (i.e., rBOND) and RB (rather than 
RS).  (Hint:  Use the FOC on B1 you computed in part b above and follow a very similar set of 
algebraic manipulations as we followed in class.) 

 
Solution:  Based on the derivations in part d above, this step simply requires applying the Fisher 
relation a couple of times.  Specifically, let’s start again with the final condition obtained in part d 
above 

1
1

BOND

B

i i
i R

λ
⎡ ⎤−

= ⋅⎢ ⎥+⎣ ⎦
 

and rewrite it as 
1 (1 ) 1

1

BOND

B

i i
i R

λ
⎡ ⎤+ − +

= ⋅⎢ ⎥+⎣ ⎦
. 

Next, multiply and divide the term inside square brackets by (1+π) (which of course simply means 
we’re multiplying by one), which gives 
 

1 1
11 1

1
1

BOND

B

i i

i R
π πλ

π

⎡ ⎤+ +
−⎢ ⎥+ += ⋅⎢ ⎥+⎢ ⎥

⎢ ⎥+⎣ ⎦

 

 
By the Fisher relation, we can express this as 
 

1 (1 ) 1
1

BOND

B

r r
r R

λ
⎡ ⎤+ − +

= ⋅⎢ ⎥+⎣ ⎦
, 

or, finally, 
 

1
1

BOND

B

r r
r R

λ
⎡ ⎤−

= ⋅⎢ ⎥+⎣ ⎦
, 
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which is obviously similar to the type of condition we derived in class regarding stock financing. 
 
 
f. Compare the expression you just derived in part e with expression (1.1).  Suppose r = rSTOCK.  If 

this is the case, is rBOND equal to r, is rBOND smaller than r, is rBOND larger than r, or is it 
impossible to determine?  Furthermore, in this case, does the financing constraint affect firms’ 
physical investment decisions?  Briefly justify your conclusions and provide brief explanation. 

 
Solution:  The expression derived in part e and expression (1.1) both feature λ on the left hand side.  
We can thus obviously set them equal to each other, giving us 
 

 1 1
1 1

STOCK BOND

S B

r r r r
r R r R

⎡ ⎤ ⎡ ⎤− −
⋅ = ⋅⎢ ⎥ ⎢ ⎥+ +⎣ ⎦ ⎣ ⎦

. 

 
Although you did not have to perform the next algebraic step (i.e., you could conduct the ensuing 
logical analysis based just on this last expression), we can multiply this entire expression through by 
1+r and then also multiply the entire expression by RS, which would give us 
 

 ( )
S

STOCK BOND
B

Rr r r r
R

− = − ⋅ , 

which makes obvious what the consequence of r = rSTOCK is.  If r = rSTOCK, obviously it must also be 
that r = rBOND (because you are told that RS cannot be zero). 
 
Thus, if the returns on stocks (“risky assets”) are equal to the return on physical assets (r), the return 
on bonds (“safe financial assets”) are also equal to the return on physical assets (r).  This is 
essentially just a statement of the Fisher relation – recall from Chapter 14 that one way to 
understand/interpret the Fisher equation is that it says the returns on “safe” and “risky” assets are 
equal to each other (the “no-arbitrage” relationship).  Here, the underlying view is that the returns on 
all types of bonds are “riskless” (“safe”) , just as is the returns on physical capital. 
 
g. Through late 2008, suppose that r = rSTOCK was a reasonable description of the U.S. economy for 

the preceding 20+ years.  In late 2008, rSTOCK fell dramatically below r, which, as we studied in 
class, would cause the financial accelerator effect to begin.  Suppose government policy-makers, 
both fiscal policy-makers and monetary policy-makers, decide that they need to intervene in 
order to try to choke off the accelerator effect.  Furthermore, suppose that there is no way to 
change either RS or RB (because of coordination delays amongst various government agencies, 
perhaps).  Using all of your preceding analysis as well as drawing on what we studied in class, 
explain why “buying bonds” (which, again, means long-maturity bonds in the sense described 
above) might be a sound strategy to pursue.  (Note:  The analysis here is largely not 
mathematical.  Rather, what is required is an careful logical progression of thought that explains 
why buying bonds might be a good idea.) 

 
Solution:  As we discussed in class, one way of offsetting the feedback effects of a decline in 
financial market returns is to relax financial market regulations – increasing RS and/or RB in this case.  
The reason this may be helpful is that, all else equal, it would serve to lower λ (examine the 
conditions derived above), which is, analytically, where the problems can be traced to (ie, the fact 
that financing constraints “matter”).   From the financing constraint itself, it is obvious that raising RS 
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and/or RB increases the “effective” market value of firms’ collateralizeable financial assets (recall the 
basic information asymmetry problems that underlie this financing constraint): 
 

1 2 1 1 1 1 1( ) S B bP k k R S a R P B⋅ − = ⋅ ⋅ + ⋅ ⋅ . 
 

That is, raising RS and/or RB increases the right hand side of the financing constraint.  But if that is 
infeasible for institutional or political other reasons, another policy intervention that has the same 
effect is to try to raise any of the other components of the right hand side of the financing constraint:  
including government efforts to try to raise the price of bonds by directly buying them in markets 
(i.e., the increased demand for bonds in bond markets should, all else equal, raise the price of bonds). 
 
This is beyond the scope of this question, but this type of analysis can shed light on a host of policy 
proposals and programs that are being/have been discussed the past year:  many of them share the 
broad goal of trying to raise the “effective: market value of the private sector’s collateralizeable 
financial assets.  This could be achieved by some combination of direct government purchases of a 
variety of financial assets (stocks, bonds), simply “giving” firms “more assets” (i.e., directly giving 
them more a and/or more B), allowing “new types” of financial assets to be used for collateral 
purposes (i.e., adding a third asset to the right hand side of the financing constraint, a fourth asset to 
the right hand side of the financing constraint, etc.):  broadly speaking, it’s all about raising the right 
hand side of the financing constraint above! 
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2. The Yield Curve.  An important indicator of markets’ beliefs/expectations about the future path 
of the macroeconomy is the “yield curve,” which, simply put, describes the relationship between 
the maturity length of a particular bond (recall that bonds come in various maturity lengths) and 
the per-year interest rate on that bond.  A bond’s “yield” is alternative terminology for its interest 
rate.  A sample yield curve is shown in the following diagram: 

 

 
 
This diagram plots the yield curve for U.S. Treasury bonds that existed in markets on February 9, 
2005:  as it shows, a 5-year Treasury bond on that date carried an interest rate of about 4 percent, 
a 10-year Treasury bond on that date carried an interest rate of about 4.4 percent, and a 30-year 
Treasury bond on that date carried an interest rate of about 4.52 percent. 
 
Recall from our study of bond markets that prices of bonds and nominal interest rates on bonds 
are negatively related to each other.  The yield curve is typically discussed in terms of nominal 
interest rates (as in the graph above).  However, because of the inverse relationship between 
interest rates on bonds and prices of bonds, the yield curve could equivalently be discussed in 
terms of the prices of bonds. 
 
In this problem, you will use an enriched version of our infinite-period monetary framework 
from Chapter 14 to study how the yield curve is determined.  Specifically, rather than assuming 
the representative consumer has only one type of bond (a one-period bond) he can purchase, we 
will assume the representative consumer has several types of bonds he can purchase – a one-
period bond, a two-period bond, and, in the later parts of the problem, a three-period bond. 
 
Let’s start just with two-period bonds.  We will model the two-period bond in the simplest 
possible way:  in period t, the consumer purchases TWO

tB  units of two-period bonds, each of 
which has a market price ,b TWO

tP  and a face value of one (i.e., when the two-period bond pays  
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off, it pays back one dollar).   The defining feature of a two-period bond is that it pays back 
its face value two periods after purchase (indeed, hence the term “two-period bond”…).  The 
one-period bond is just as we have discussed in class and in Chapter 14. 
 
Mathematically, then, suppose (just as in Chapter 14) that the representative consumer has a 
lifetime utility function starting from period t  

 
2 2 3 31 2 3

1 2 3
1 2 3

ln ln ln ln ln ln ln ln ...t t t t
t t t t

t t t t

M M M Mc c c c
P P P P

β β β β β β+ + +
+ + +

+ + +

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ + + + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
, 

and his period-t budget constraint is given by  
 

 ,
1 1 2 1( )b b TWO TWO TWO

t t t t t t t t t t t t t t t tPc P B P B M S a Y M B B S D a− − − −+ + + + = + + + + + . 
 
(Based on this, you should know what the period t+1 and period t+2 and period t+3, etc. budget 
constraints look like).  This budget constraint is identical to that in Chapter 14, except of course 
for the terms regarding two-period bonds.  Note carefully the timing on the right hand side – 
in accordance with the defining feature of a two-period bond, in period t, it is 2

TWO
tB −  that 

pays back its face value.  The rest of the notation is just as in Chapter 14, including the fact that 
the subjective discount factor (i.e., the measure of impatience) is β < 1. 

a. Qualitatively represent the yield curve shown in the diagram above in terms of prices of 
bonds rather than interest rates on bonds.  That is, with the same maturity lengths on the 
horizontal axis, plot (qualitatively) on the vertical axis the prices associated with these 
bonds. 

 
Solution:  With maturity lengths plotted on the horizontal axis, the yield curve in terms of bond 
prices is downward-sloping.  This follows simply because of the inverse relationship between 
bond prices and interest rates.  The yield curve shown above is in terms of interest rates and is 
strictly increasing; hence the associated yield curve in terms of prices must be strictly decreasing. 
 

b. Based on the utility function and budget constraint given above, set up an appropriate 
Lagrangian in order to derive the representative consumer’s first-order conditions with 
respect to both Bt and TWO

tB  (as usual, the analysis is being conducted from the 
perspective of the very beginning of period t).  Define any auxiliary notation that you 
need in order to conduct your analysis. 

 
Solution:  The only two first-order conditions that you needed here are those on Bt and TWO

tB .  
Denoting by λt the Lagrange multiplier on the period-t budget constraint and by λt+1 the Lagrange 
multiplier on the period-t+1 budget constraint, the two first-order conditions, respectively, are 
 
 1 0b

t t tPλ βλ +− + =  
and 
 
 , 2

2 0b TWO
t t tPλ β λ +− + = . 
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Note well the t+2 time subscripts in the second expression; this follows from the fact the a two-
period bond purchased in period t does not repay its promised face value until period t+2.  (Refer 
back to Problem Set 4 for an analogous stock-pricing model in which stocks took two periods to 
pay off their capital gains and dividends.) 
 

c. Using the two first-order conditions you obtained in part b, construct a relationship 
between the price of a two-period bond and the price of a one-period bond.  Your final 
relationship should be of the form , ...b TWO

tP = , and on the right-hand-side of this 
expression should appear (potentially among other things), b

tP .  (Hint: in order to get 
b

tP into this expression, you may have to multiply and/or divide your first-order 
conditions by appropriately-chosen variables.) 

 

Solution:  From the first expression above, we have, as usual that 1b t
t

t

P βλ
λ

+= .  From the second 

expression above, we analogously can obtain 
2

, 2b TWO t
t

t

P β λ
λ

+= .  We can rewrite this expression 

for the price of a two-period bond as 
 

 , 2 1

1

b TWO t t
t

t t

P βλ βλ
λ λ

+ +

+

= , 

in which we have simply multiplied and divided the preceding expression by λt+1 (i.e., we have 
multiplied by one, always a valid mathematical operation).  The final term on the far right-hand-
side is nothing more than the price of a one-period bond, so we can write 
 

, 2

1

b TWO bt
t t

t

P Pβλ
λ

+

+

= , 

 
which satisfies the form of the relationship you were asked to derive.  We can actually boil this 
down further, though.  Note that the price of one-period bond purchased in period t+2 would 

be given by 2
1

1

b t
t

t

P βλ
λ

+
+

+

= , which follows from optimization with respect to period t+1 one-

period bond holdings.  Using this expression in the period-t price of a two-period bond, we thus 
obtain 
 

,
1

b TWO b b
t t tP P P+= , 

   
which is a key idea in finance theory:  the price of a multi-period asset (bond) is nothing more 
than the product of the prices of two consecutive one-period assets (bond). 
 

d. Suppose that the optimal nominal expenditure on consumption (Pc) is equal to 1 in 
every period.  Using this fact, is the price of a two-period bond greater than, smaller than, 
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or equal to the price of a one-year bond?  If it is impossible to tell, explain why; if you 
can tell, be as precise as you can be about the relationship between the prices of the two 
bonds.  (Hint:  you may need to invoke the consumer’s first-order condition on 
consumption) 

 

Solution:  Start with the relationship , 2

1

b TWO bt
t t

t

P Pβλ
λ

+

+

=  derived above.  If nominal consumption 

expenditures are constant (and equal to one) every period, this means that λ = 1 every period.  
(This conclusion follows from the fact that the FOC with respect to consumption is 1/ct – λtPt = 0 

in every period, which can be rearranged to 1
t

t tPc
λ = ).  If the multiplier is one every period, we 

immediately have 
 
 ,b TWO b

t tP Pβ= . 
Because β < 1, we conclude ,b TWO b

t tP P< . 
 

e. Now suppose there is also a three-period bond.  A three-period bond purchased in any 
given period does not repay its face value (also assumed to be 1) until three periods after  
it is purchased.  The period-t budget constraint, now including one-, two-, and three-
period bonds, is given by 

 
, ,

1 1 2 3 1( ) ,b b TWO TWO b THREE THREE TWO THREE
t t t t t t t t t t t t t t t t t t tPc P B P B P B M S a Y M B B B S D a− − − − −+ + + + + = + + + + + +

 
where THREE

tB  is the quantity of three-period bonds purchased in period t and ,b THREE
tP  its 

associated price.  Following the same logical steps as in parts b, c, and d above (and 
continuing to assume that nominal expenditure on consumption (Pc) is equal to one in 
period every period), is the price of a three-year bond greater than, smaller than, or equal 
to the price of a two-year bond?  If it is impossible to tell, explain why; if you can tell, be 
as precise as you can be about the relationship between the prices of the two bonds.  
(Hint:  you may need to invoke the consumer’s first-order condition on consumption). 
 

Solution:  Extending the Lagrangian from above, the first-order condition with respect to 
THREE
tB  is 

 
, 3

3 0b THREE
t t tPλ β λ +− + = , 

 

which can be rearranged to yield 
3

, 3b THREE t
t

t

P β λ
λ

+= .  Just like in part c above, by cleverly 

multiplying by one, we can express this as 
 

 
2

, 3 2 1

2 1

b THREE t t t
t

t t t

P β λ βλ βλ
λ λ λ

+ + +

+ +

= , 
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which, in exactly the same way as in part c, we can express in terms of chained one-period 
bond prices, 
 

 , 3
1

2

b THREE b bt
t t t

t

P P Pβλ
λ

+
+

+

= . 

 
If the Lagrange multiplier λ is constant every period, we can conclude the price of a three-
period bond is smaller than the price of a two-period bond (which in turn, from part c, is 
smaller than the price of a one-period bond).  This again follows because β < 1. 

 
f. Suppose that β = 0.95.  Using your conclusions from parts d and e, plot a yield curve in 

terms of bond prices (obviously, you can plot only three different maturity lengths here). 
 

Solution:  Based on the analyses in parts d and e, the price of bonds is clearly negatively-
related to its maturity length, hence the yield curve in terms of prices is strictly decreasing.  
This is just as your sketch of the empirical yield curve in part a. 

 
g. What is the single most important reason (economically, that is) for the shape of the yield 

curve you found in part f?  (This requires only a brief, qualitative/conceptual response.) 
 

Solution:  Re-examining our conclusions/analyses in parts d, e, and f, the sole reason we 
were able to reach the conclusions we reached in each of those parts was the fact that β < 1.  
Thus, the idea of impatience and its effects on the macroeconomy rears its head again, this 
time with respect to bond prices of different maturities.  The conceptual idea is simple:  
because of impatience, the longer a bond purchaser must wait to receive a given face value, 
the less he will be willing to pay for it today (and this is reflected in bond market prices 
through the bond demand function for different maturity bonds). 

 


