

Mode	el Structure
FIRM PROFIT MAXIMIZATION	
Re-express equation 3	
$-P_1 + \frac{P_2 f_k(k_2, n_2)}{1+i} + \frac{P_2}{1+i} = 0 \xrightarrow{\text{Divide by } P_1} \frac{P_2 f_k(k_2, n_2)}{P_1(1+i)} + \frac{P_2}{P_1(1+i)} = 1$	
Group terms informatively $\xrightarrow{P_2/P_1 = 1 + n_2} \begin{pmatrix} \underline{P_2} \\ P_1 \end{pmatrix} \begin{pmatrix} \underline{1} \\ 1+i \end{pmatrix} f_k(k_2, n_2) + \begin{pmatrix} \underline{P_2} \\ P_1 \end{pmatrix} \begin{pmatrix} \underline{1} \\ 1+i \end{pmatrix} = 1 \xrightarrow{P_2/P_1 = 1 + n_2} \begin{pmatrix} \underline{1+\pi_2} \\ 1+i \end{pmatrix} f_k(k_2, n_2) + \begin{pmatrix} \underline{1} \\ P_2 \end{pmatrix} \begin{pmatrix} \underline{1} \\ 1+i \end{pmatrix} = 1$	$\frac{1+\pi_2}{1+i}\bigg) = 1$
Fisher equation $ \underbrace{f_k(k_2, n_2)}_{1+r} + \frac{1}{1+r} = 1 \qquad \xrightarrow{\text{Multiply by 1+r}} f_k(k_2, n_2) + 1 = 1 + r $	
$ f_k(k_2, n_2) = r $ Equivalent/alternat representation of fin profit-maximizing c for capital	ive rm ondition
October 26, 2011	6

Mode	el Structure
FIRM PROFIT MAXIMIZATION	
$= 0$ $P_{1}f(k_{1},n_{1}) + P_{1}k_{1} - P_{1}w_{1}n_{1} - P_{1}k_{2} + \frac{P_{2}f(k_{2},n_{2})}{1+i} + \frac{P_{2}k_{2}}{1+i} - \frac{P_{2}w_{2}n_{2}}{1+i} - \frac{P_{2}k_{3}}{1+i}$	
D FOCs with respect to n_1 , n_2 , k_2	
Identical except for with respect to n_1 : $P_1 f_n(k_1, n_1) - P_1 w_1 = 0$ Equation 1	
time subscripts with respect to n_2 : $\frac{P_2 f_n(k_2, n_2)}{1+i} \neq \frac{P_2 w_2}{1+i} = 0$ Equation 2	
with respect to k_2 : $-P_1 + \frac{P_2 f_k(k_2, n_2)}{1+i} + \frac{P_2}{1+i} = 0$ $\stackrel{\text{equivalent}}{\longleftarrow} f_k(k_2, n_2) = r$	Equation 3
Profit-maximizing labor hiring implies	
$f_n(k_1, n_1) = w_1$ and $f_n(k_2, n_2) = w_2$	
Profit-maximizing capital purchases (for the future) impl	ies
$f_k(k_2, n_2) = r$	
October 26, 2011	8

Co	DBB-DOUGLAS PRODUCTION FUNCTION	
	A commonly-used functional form in modern quantitative macroeconomic analysis	
	$f(k_t, n_t) = k_t^{\alpha} n_t^{1-\alpha}$ (saw Cobb-Douglas utility ful on Practice Problem Set 1)	nctior
	Describes the empirical relationship between aggregate GDP, aggregate capital, and aggregate labor quite well	
	$\alpha \in (0,1)$ measures capital's share of output	
	Hence $(1-\alpha) \in (0,1)$ measures labor's share of output	
	Interpretation	
	The relative importance of (either) capital (or labor) in the production process	•
	Estimates for U.S. economy: $\alpha \approx 0.3$	
	Estimates for Chinese economy: $\alpha \approx 0.15$ (not (yet) a very capital-rie economy)	ich
	Cobb-Douglas form useful for illustrating factor demands	
	$\square \qquad mpn_t = f_n(k_t, n_t) = (1 - \alpha)k_t^{\alpha} n_t^{-\alpha}$	
	$\square \qquad mpk_{\iota} = f_{\iota}(k_{\iota}, n_{\iota}) = \alpha k_{\iota}^{\alpha - 1} n_{\iota}^{1 - \alpha}$	

