









|                                                                                                                                               | Model Analysis                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| M PROFIT MAX                                                                                                                                  | IMIZATION                                                                                                                                                                                                                                                                                                        |
| $k_{1}, n_{1}) + P_{1}k_{1} + (S_{1} + D_{1})a_{0} - P_{1}w$ $\lambda \left[ R \cdot S_{1} \cdot a_{1} - P_{1} \cdot (k_{2} - k_{1}) \right]$ | $r_1n_1 - P_1k_2 - S_1a_1 + \frac{P_2f(k_2, n_2)}{1+i} + \frac{P_2k_2}{1+i} + \frac{(S_2 + D_2)a_1}{1+i} - \frac{P_2w_2n_2}{1+i}$                                                                                                                                                                                |
| FOCs with respect to                                                                                                                          | n <sub>1</sub> , n <sub>2</sub>                                                                                                                                                                                                                                                                                  |
| with respect to $n_1$ : $P_1 f_n$                                                                                                             | $(k_1, n_1) - P_1 w_1 = 0$ Equation 1                                                                                                                                                                                                                                                                            |
| with respect to $n_2$ : $\underbrace{P_2 f_n}_{1}$                                                                                            | $\frac{(k_2, n_2)}{1+i} - \frac{P_2'w_2}{1+i} = 0$ Equation 2                                                                                                                                                                                                                                                    |
| Financing constraint (                                                                                                                        | loes not affect profit-maximizing choices of labor hiring                                                                                                                                                                                                                                                        |
| thus same analysis                                                                                                                            | from Chapter 6 of labor demand curve, etc, applies                                                                                                                                                                                                                                                               |
| FOCs with respect to                                                                                                                          | k <sub>2</sub> , a <sub>1</sub>                                                                                                                                                                                                                                                                                  |
| The interesting as                                                                                                                            | pects of this framework                                                                                                                                                                                                                                                                                          |
|                                                                                                                                               |                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                               | <b>EXAMPROFIT MAX</b><br>$k_1, n_1) + P_1k_1 + (S_1 + D_1)a_0 - P_1w_1$<br>$\lambda [R \cdot S_1 \cdot a_1 - P_1 \cdot (k_2 - k_1)]$<br><b>FOCs with respect to</b><br>with respect to $n_1$ : $P_1f_n$<br>with respect to $n_2$ : $P_2f_n$<br>1<br><b>FOCs with respect to</b><br><b>The interaction action</b> |



|        | Л                                                                                                                                                                                                                                                                                | <i>lodel Analysi</i> s   |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| FI     | RM PROFIT MAXIMIZATION                                                                                                                                                                                                                                                           |                          |
| $P_1f$ | $(k_1, n_1) + P_1k_1 + (S_1 + D_1)a_0 - P_1w_1n_1 - P_1k_2 - S_1a_1 + \frac{P_2f(k_2, n_2)}{1+i} + \frac{P_2k_2}{1+i} + \frac{(S_2 + D_2)a_1}{1+i}$                                                                                                                              | $-\frac{P_2w_2n_2}{1+i}$ |
| 4      | $-\lambda \left[ R \cdot S_1 \cdot a_1 - P_1 \cdot (k_2 - k_1) \right]$                                                                                                                                                                                                          |                          |
|        | FOCs with respect to $k_2$ , $a_1$                                                                                                                                                                                                                                               |                          |
|        | with respect to $k_2$ : $-P_1 + \frac{P_2 f_k(k_2, n_2)}{1+i} + \frac{P_2}{1+i} - \lambda P_1 = 0$ Equation 3                                                                                                                                                                    |                          |
|        | with respect to $a_1$ : $-S_1 + \frac{S_2 + D_2}{1 + i} + \lambda \cdot R \cdot S_1 = 0$ Equation 4                                                                                                                                                                              |                          |
|        | <ul> <li>Analysis of Equation 4 in isolation</li> <li>Answers the central question: under what conditions does λ = 0?</li> <li>Reveals how stock market returns affect financing constraints</li> <li>Reveals how government regulation affects financing constraints</li> </ul> |                          |
|        | Analysis of Equation 3 and Equation 4 jointly <ul> <li>Demonstrates how/why financial market prices (i.e., stock prices/ret for macroeconomic activity</li> </ul>                                                                                                                | urns) matte              |
|        | The financial accelerator effect                                                                                                                                                                                                                                                 |                          |
| Ner    | ambar 20, 2011                                                                                                                                                                                                                                                                   | -                        |













| Finance Fundamenta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ls |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| WHY IS FINANCING A CONSTRAINT?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
| $\lambda = \left[\frac{r - r^{STOCK}}{1 + r}\right] \cdot \frac{1}{R}$ The Lagrange multiplier on firm's financing constraint                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |
| Image: style sty | r' |
| November 30, 2011 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |













| Сс | <b>DBB-DOUGLAS PRODUCTION FUNCTION</b>                                                                                       |
|----|------------------------------------------------------------------------------------------------------------------------------|
|    | Commonly-used functional form in quantitative macroeconomic analysis                                                         |
|    | $f(k,n) = k^{\alpha} n^{1-\alpha}$                                                                                           |
|    | Describes the empirical relationship between aggregate GDP, aggregate capital, and aggregate labor quite well                |
|    | $lpha \in (0,1)$ measures capital's share of output                                                                          |
|    | <b>Hence</b> $(1-\alpha) \in (0,1)$ measures labor's share of output                                                         |
|    | <ul> <li>Interpretation</li> <li>The relative importance of (either) capital (or labor) in the production process</li> </ul> |
|    | <b>Estimates for U.S. economy:</b> $\alpha \approx 0.3$                                                                      |
|    | $\hfill\square$ Estimates for Chinese economy: $\alpha\approx 0.15$ (not (yet) a very capital-rich economy)                  |
|    | Cobb-Douglas form useful for illustrating factor demands                                                                     |
|    | $\square \qquad mpn = f_n(k,n) = (1-\alpha)k^{\alpha}n^{-\alpha}$                                                            |
|    | $\square \qquad mpk = f_{k}(k,n) = \alpha k^{\alpha-1} n^{1-\alpha}$                                                         |









