
The Basic RBC Model: Theory and Computation

1 The Model

Here we sketch the basic RBC model with four exogenous processes: TFP zt; government spending

gt; a proportional labor income tax rate τn
t ; and a proportional capital income tax rate τk

t . The

infinitely-lived representative household’s problem is to maximize lifetime utility

max E0

∞∑
t=0

βtu(ct, nt) (1)

subject to the sequence of flow budget constraints

ct + kt+1 + Tt = (1− τn
t )wtnt +

[
1 + (1− τk

t )(rt − δ)
]
kt, (2)

where wt is the real wage rate, rt is the real capital rental rate, δ is the depreciation rate of capital,

and τn
t and τk

t are tax rates on labor and capital income, respectively. The household chooses in

each period consumption ct, labor nt, and next-period capital holdings kt+1, taking as given all

other variables. Taxes finance exogenous government spending; the government budget constraint

is given by

τn
t wtnt + τk

t (rt − δ)kt + Tt = gt. (3)

We allow for a lump-sum component of taxes, Tt, in order to abstract from government financing

issues, as the basic RBC model does.

Summing the flow household budget constraint and the flow government budget constraint

yields, as always, the economy’s resource frontier (aka, the PPF),

ct + kt+1 − (1− δ)kt + gt = ztf(kt, nt), (4)

where f(kt, nt) is the production technology of the economy that is buffeted by shocks to the

Solow process (aka TFP) zt. The production technology is operated by a continuum of identical

perfectly-competitive firms (equivalently, a single representative firm), who hire labor and capital

in perfectly-competitive spot markets, taking as given wt and rt. Flow profits of the firm are

ztf(kt, nt)−wtnt−rtkt, and profit-maximization by firms leads to the standard conditions that factor

prices (i.e., the wage and the rental rate) equal their respective marginal products: wt = ztfn(kt, nt)
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and rt = ztfk(kt, nt). For a complete exposition of the basic RBC model, see the seminal work

of Kydland and Prescott (1982), the overview by King and Rebelo (1999), or any of the by-now

countless descriptions of the RBC model.

Each of the four exogenous processes evolves according to an AR(1) in logs:

ln zt+1 = (1− ρz)z̄ + ρz ln zt + εz
t+1, (5)

ln gt+1 = (1− ρg)ḡ + ρg ln gt + εg
t+1, (6)

ln τn
t+1 = (1− ρτn)τ̄n + ρτn ln τn

t + ετn

t+1, (7)

ln τk
t+1 = (1− ρτk)τ̄k + ρτk ln τk

t + ετk

t+1. (8)

Each of the ρxx parameters is the AR(1) coefficient of the respective process; each of the x̄x

variables is the log-mean of the exogenous variable; each of the εxx
t+1 is the shock to process xx; and

for simplicity we assume that the processes are uncorrelated with each other. This assumption,

and, indeed, the assumption of AR(1) processes for each of these driving forces, are made for

illustrative purposes; the goal here is to see the basic model in operation computationally. The

time-t realizations of the shocks εxx
t are known by all agents in the economy at the very beginning

of time t, before time-t decisions are made.

2 Equilibrium

Because we are allowing for distortionary taxes, the first welfare theorem fails, and we cannot

appeal to a Social Planner problem in order to characterize the equilibrium of the model. We must

therefore resort to solving for the equilibrium directly using the household and firm first-order

conditions along with the resource frontier. Standard Lagrangian (or value-function) techniques

yield the household optimality conditions,

−un(ct, nt)
uc(ct, nt)

= (1− τn
t )wt (9)

uc(ct, nt) = Et

{
βuc(ct+1, nt+1)

[
1 + (1− τk

t+1)(rt+1 − δ)
]}

, (10)

in which the time-t conditional expectations operator Et(.) appears because we allow for sequentially-

unfolding uncertainty in the four exogenous processes (as described above). Condition (9) describes

the household’s optimal consumption-leisure tradeoff: at the optimum, the marginal rate of substi-

tution (MRS) between consumption and leisure is equated to the after-tax wage. Condition (10)

describes the household’s optimal consumption-savings tradeoff: at the optimum, the MRS between
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period-t consumption and period-t + 1 consumption is equated to the after-tax return on savings

(capital holdings).1

Along with the firm optimality conditions, the four laws of motion for the four exogenous

processes, and the resource constraint, conditions (9) and (10) describe the equilibrium of the

model. If we substitute the firm optimality conditions (wt = ztfn(kt, nt) and rt = ztfk(kt, nt))

into (9) and (10), the equilibrium of the model is described by the three conditions (4), (9), (10),

and the three endogenous variables to be solved for are ct, nt, and kt+1.

3 Computing the Equilibrium

In any given period t, the choice variables of the model are ct, nt, and kt+1. In general, we cannot

solve this model analytically; we must resort to computational methods. Saying we must “resort

to computational methods” to solve the model already raises a host of questions. In particular,

what does this even mean? In practice (and this is even before we get to computations), this

means specifying a solution for each endogenous variable as a function of the state variables of the

model. Remember that the RBC model is a dynamic model — variables evolve over time. Loosely

speaking, the state of the model at a given point in time is the current and past realizations of

what has happened in the model. Briefly, we could say that the state of the model is the history

of what has already transpired. In the context of solving the model, a state variable is one that

is associated with the model, rather than being associated with the optimization problem of the

household or firm.

Let’s consider the state of the model in more detail. In principle, the state of the model at any

point in time t consists of the period-t realizations of the exogenous variables, the time-t quantities

of any endogenous accumulation (stock) variables (in the basic RBC model, capital, because the

period-t capital stock is “inherited” from period t − 1), along with their entire histories. That

is (assuming perfect record-keeping and perfect recall, etc), in period t, the, say, period t − 14

realization of the labor tax rate τn
t−14 is known, so in principle the period-t consumption, labor, or

capital decisions could be functions of it. A convenient technical consequence, though, of specifying

the exogenous processes as AR(1)s is that period-t decisions are functions of only the period-t state

variables.2 That is, ct, nt, and kt+1 are functions only of [kt, zt, gt, τ
n
t , τk

t ]. From our, the modeler’s,
1Recall that any fully-fledged general equilibrium macro model has three types of markets: goods markets, labor

markets, and asset (savings) markets. The representative household’s optimal tradeoffs between its supplies and

demands in these markets are described by (9) and (10). Again, see Kydland and Prescott (1982), King and Rebelo

(1999), or any description of the basic RBC model for more on the derivations of these conditions.
2This is akin to the notion of a Markov matrix in linear algebra. In the parlance of linear algebra, a Markov

process is one in which the evolution of a vector of variables is described by repeated multiplication by the same

matrix (known as the transition matrix). In order to determine the next value of the vector of variables in the chain
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perspective, then, the state variables of the model are [kt, zt, gt, τ
n
t , τk

t ]. Let’s summarize this vector

as St. What “solving the model” now means is that we are trying to find functions c(St), n(St),

k(St) that describe how the endogenous variables depend on St.

These functions cannot be determined analytically; so now the “solving computationally” part

comes in. More precisely, what we must do is numerically approximate these unknown (and ul-

timately, unknowable...) functions. In the simplest possible terms, what we end up doing is

constructing, in ways to be described next, functions capprox(St), napprox(St), kapprox(St), that we

believe (hope?) are “close enough” to the true, unknowable actual functions c(St), n(St), k(St).

There are a great many algorithms, borrowed from the rich field of numerical analysis in mathe-

matics, that one can employ to approximate these unknown functions. A useful distinction to make

between the many algorithms is that between global approximations and local approximations.

3.1 Global Approximations

As the name implies, a global approximation method is one in which the technique used leads to

approximations capprox(St), napprox(St), kapprox(St) that are (hopefully...) very close to the true

c(St), n(St), k(St) over a very broad (“global”) range of possible values of the state vector St. The

obvious pro of such an approach is that the approximation should be fairly accurate no matter where

the model “is” in the unfolding of its dynamic events. A con of this approach is that, given current

hardware and software limitations, these methods can only be practically applied to relatively small

models.3 Of course, it’s likely that in N years, computational power will increase sufficiently that

global methods will eventually become the default way to do things.4 For an overview of some

of the most popular (popular because they have proven sufficiently useful) global methods in use

today, see Aruoba, Fernandez-Villaverde, and Rubio-Ramirez (2006).

of vectors (termed, surprisingly enough, the Markov chain), all that need be done is multiply the transition matrix by

the current vector of variables in the chain. Knowledge of past vectors in the chain is not needed. AR(1) processes

have representations as Markov processes. Thus (this argument is not completely technically correct, but the idea is

right...), in a model driven by AR(1) shocks, a so-called “Markov-equilibrium” of the model can usually be found.

A technical point that we will not consider: for a lot of models, Markov equilibria are only one type of equilibrium

that arises. Non-Markov equilibria, in which the relevant period-t state does include lagged variables, also can arise.

As a general rule, though, easy-to-apply algorithms (conceptually as well as technically) do not exist for finding

non-Markov equilibria.
3For example, the model of Christiano, Eichenbaum, and Evans (2005) would probably very hard (impossible?) to

solve using global methods given current technology. Likewise, the Board’s domestic and international models would

also likely be impossible to solve using global methods.
4To be clear, by today’s standards the basic RBC model is considered a tiny model. As such, it easily yields to

global approximations.
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3.2 Local Approximations

Because we probably want to be able to solve models today, though, and not have to wait N years,

local approximations are likely the only way to go medium- and large-scale macro models. Local

approximations are all based on Taylor’s theorem and Taylor approximations, which you are familiar

with from basic calculus. Recall that Taylor approximations are only locally accurate: a Taylor

approximation is a linear or higher-order approximation to some function around a given point,

and the accuracy of the approximation deteriorates as one moves further away from that point.

This feature is in contrast to global approximations, which by construction do not deteriorate in

accuraxy as the model moves away from any given point.

There are a great many specific algorithms that implement first-order (linear) approximations,

which are of course the simplest type of Taylor approximation. In the end, they all boil down to

solving a linear system of equations, for which there are in general a great many techniques in linear

algebra. We will use the implementation by Schmitt-Grohe and Uribe (2004). As Schmitt-Grohe

and Uribe discuss, once one has a linear approximation in hand, it can be relatively straightforward

to implement higher-order (second-order, third-order, etc.) approximations. There are not as many

general algorithms for generating second-order approximations as there are for generating first-order

approximations, partly because until only relatively recently, in the realm of local approximations,

first-order solutions were thought to be “good enough” for most applications, and partly because

computational power has advanced enough to make second-order approximations of moderately-big

models only recently practical.5

3.2.1 Steady-State

Having decided we will focus on a local approximation, we must decide around which point of the

model we wish to approximate. A natural candidate is the steady-state of the model. The notion

of a steady state is one from the theory of differential equations. Recall that a differential equation

(or, its discrete-time counterpart, a difference equation) is one in which variables at different points

in time are related to each other somehow. Notice that equation (10) is just such an equation: it

relates consumption and leisure in period t to consumption and leisure in period t + 1. It is thus a

difference equation. When a difference equation is allowed to evolve for a very long period of time

(technically, for an infinite number of periods), it may (or may not...) settle down to a fixed point.

Alternatively, a difference process may begin at a certain point and may, for some reason, never

be perturbed from that point. In either case, the point (either reached eventually or from which
5For certain types of welfare comparisons (as in policy experiments), it turns out first-order approximations can

give misleading results, whereas second-order and higher approximations do not. This issue is beyond our scope for

now, though, and does not arise in solving and simulating the basic RBC model.
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it never moves at all) is termed a steady state of the difference process. Very loosely speaking, the

steady-state of a difference process is one in which time does not matter at all or has no meaning.

In our model, condition (10) is a difference process. To speak properly of a steady-state in our

model, we first shut down the exogenous processes, so that the steady-state we are considering is

the non-stochastic steady-state. In the non-stochastic steady-state (when time “no longer matters,”

so to speak), we can write (10) as

uc(c, n) = βuc(c, n)
[
1 + (1− τk)(fk(k, n)− δ)

]
. (11)

Note that, mechanically, all we have done is remove the expectations operator (because we have

shut down the shocks of the model) and removed all time subscripts (because time “doesn’t matter”

in the steady-state). Imposing steady-state on (4) and (9), we end up with three equations in the

three numbers (not sequences) c, n, k, which we can solve using any routine numerical-zero-finder.

The resulting vector (css, nss, kss) is the steady-state of the model, and is the steady-state around

which we conduct our local approximation.
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